Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions

Yan ping Chen*, Jeffery S. Pettis, Yan Zhao, Xinyue Liu, Luke J. Tallon, Lisa D. Sadzewicz, Renhua Li, Huoqing Zheng, Shaokang Huang, Xuan Zhang, Michele C. Hamilton, Stephen F. Pernal, Andony P. Melathopoulos, Xianghe Yan, Jay D. Evans

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Background: The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections.Results: We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia.Conclusions: The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.

Original languageEnglish
Article number451
JournalBMC Genomics
Volume14
Issue number1
DOIs
StatePublished - 5 Jul 2013
Externally publishedYes

Keywords

  • Comparative genomics
  • Genome
  • Honey bees
  • Microsporidia
  • Nosema

Fingerprint

Dive into the research topics of 'Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions'. Together they form a unique fingerprint.

Cite this