Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression

C. Ronpirin, A. E. Jerse, C. N. Cornelissen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Neisseria gonorrhoeae is capable of utilizing host iron-binding proteins, such as transferrin, lactoferrin, and hemoglobin, as the sole source of iron. The receptor involved in transferrin iron acquisition is composed of two distinct transferrin-binding proteins, TbpA and TbpB. The genes that encode these proteins are linked on the chromosome in the order tbpB-tbpA but are separated by an inverted repeat of unknown function. In this study, we sought to understand the transcriptional organization and regulation of the tbp genes, using a combination of lacZ transcriptional fusion analysis and reverse transcriptase PCR (RT-PCR). First, we demonstrated that tbpB and tbpA are cotranscribed and coregulated from the common upstream promoter that precedes tbpB. Using β-galactosidase activity as a surrogate for tbp-specific transcription, we found that tbpB-specific transcripts were more prevalent than tbpA-specific transcripts after 2 h of growth under iron stress conditions. We confirmed the results obtained by fusion analysis by using RT-PCR applied to native RNA isolated from wild-type gonococci. Three different varieties of RT-PCR were employed: relative, competitive, and real time quantitative. The results of all analyses indicated that tbpB-specific transcripts were approximately twofold more prevalent than tbpA-specific transcripts at steady state. In iron-stressed cultures, the ratio of tbpB- to tbpA-specific message was approximately 2; however, in iron-replete cultures, this ratio dropped to 1. Using these techniques, we also quantitated the effects of iron, external pH, and presence of ligand on tbp mRNA levels.

Original languageEnglish
Pages (from-to)6336-6347
Number of pages12
JournalInfection and Immunity
Volume69
Issue number10
DOIs
StatePublished - 2001
Externally publishedYes

Cite this