TY - JOUR
T1 - Heat stress illness outcomes and annual indices of outdoor heat at U.S. Army installations
AU - Lewandowski, Stephen A.
AU - Kioumourtzoglou, Marianthi Anna
AU - Shaman, Jeffrey L.
N1 - Publisher Copyright:
© 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2022/11
Y1 - 2022/11
N2 - This study characterized associations between annually scaled thermal indices and annual heat stress illness (HSI) morbidity outcomes, including heat stroke and heat exhaustion, among active-duty soldiers at ten Continental U.S. (CONUS) Army installations from 1991 to 2018. We fit negative binomial models for 3 types of HSI morbidity outcomes and annual indices for temperature, heat index, and wet-bulb globe temperature (WBGT), adjusting for installation-level effects and long-term trends in the negative binomial regression models using block-bootstrap resampling. Ambulatory (out-patient) and reportable event HSI outcomes displayed predominately positive association patterns with the assessed annual indices of heat, whereas hospitalization associations were mostly null. For example, a onedegree Fahrenheit (°F) (or 0.55°C) increase in mean temperature between May and September was associated with a 1.16 (95% confidence interval [CI]: 1.11, 1.29) times greater rate of ambulatory encounters. The annual-scaled rate ratios and their uncertainties may be applied to climate projections for a wide range of thermal indices to estimate future military and civilian HSI burdens and impacts to medical resources.
AB - This study characterized associations between annually scaled thermal indices and annual heat stress illness (HSI) morbidity outcomes, including heat stroke and heat exhaustion, among active-duty soldiers at ten Continental U.S. (CONUS) Army installations from 1991 to 2018. We fit negative binomial models for 3 types of HSI morbidity outcomes and annual indices for temperature, heat index, and wet-bulb globe temperature (WBGT), adjusting for installation-level effects and long-term trends in the negative binomial regression models using block-bootstrap resampling. Ambulatory (out-patient) and reportable event HSI outcomes displayed predominately positive association patterns with the assessed annual indices of heat, whereas hospitalization associations were mostly null. For example, a onedegree Fahrenheit (°F) (or 0.55°C) increase in mean temperature between May and September was associated with a 1.16 (95% confidence interval [CI]: 1.11, 1.29) times greater rate of ambulatory encounters. The annual-scaled rate ratios and their uncertainties may be applied to climate projections for a wide range of thermal indices to estimate future military and civilian HSI burdens and impacts to medical resources.
UR - http://www.scopus.com/inward/record.url?scp=85142915199&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0263803
DO - 10.1371/journal.pone.0263803
M3 - Article
C2 - 36417342
AN - SCOPUS:85142915199
SN - 1932-6203
VL - 17
JO - PLoS ONE
JF - PLoS ONE
IS - 11 November
M1 - e0263803
ER -