Immobilization after injury alters extracellular matrix and stem cell fate

Amanda K. Huber*, Nicole Patel, Chase A. Pagani, Simone Marini, Karthik R. Padmanabhan, Daniel L. Matera, Mohamed Said, Charles Hwang, Ginny Ching Yun Hsu, Andrea A. Poli, Amy L. Strong, Noelle D. Visser, Joseph A. Greenstein, Reagan Nelson, Shuli Li, Michael T. Longaker, Yi Tang, Stephen J. Weiss, Brendon M. Baker, Aaron W. JamesBenjamin Levi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.

Original languageEnglish
Pages (from-to)5444-5460
Number of pages17
JournalJournal of Clinical Investigation
Issue number10
StatePublished - 1 Oct 2020
Externally publishedYes


Dive into the research topics of 'Immobilization after injury alters extracellular matrix and stem cell fate'. Together they form a unique fingerprint.

Cite this