TY - JOUR
T1 - Inferring structural variant cancer cell fraction
AU - PCAWG Evolution and Heterogeneity Working Group
AU - PCAWG Consortium
AU - Cmero, Marek
AU - Yuan, Ke
AU - Ong, Cheng Soon
AU - Schröder, Jan
AU - Adams, David J.
AU - Anur, Pavana
AU - Beroukhim, Rameen
AU - Boutros, Paul C.
AU - Bowtell, David D.L.
AU - Campbell, Peter J.
AU - Cao, Shaolong
AU - Christie, Elizabeth L.
AU - Cun, Yupeng
AU - Dawson, Kevin J.
AU - Demeulemeester, Jonas
AU - Dentro, Stefan C.
AU - Deshwar, Amit G.
AU - Donmez, Nilgun
AU - Drews, Ruben M.
AU - Eils, Roland
AU - Fan, Yu
AU - Fittall, Matthew W.
AU - Garsed, Dale W.
AU - Gerstung, Moritz
AU - Getz, Gad
AU - Gonzalez, Santiago
AU - Ha, Gavin
AU - Haase, Kerstin
AU - Imielinski, Marcin
AU - Jerman, Lara
AU - Ji, Yuan
AU - Jolly, Clemency
AU - Kleinheinz, Kortine
AU - Lee, Juhee
AU - Lee-Six, Henry
AU - Leshchiner, Ignaty
AU - Livitz, Dimitri
AU - Malikic, Salem
AU - Martincorena, Iñigo
AU - Mitchell, Thomas J.
AU - Morris, Quaid D.
AU - Mustonen, Ville
AU - Oesper, Layla
AU - Peifer, Martin
AU - Peto, Myron
AU - Raphael, Benjamin J.
AU - Rosebrock, Daniel
AU - Rubanova, Yulia
AU - Sahinalp, S. Cenk
AU - Shriver, Craig
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone’s performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.
AB - We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone’s performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.
UR - http://www.scopus.com/inward/record.url?scp=85079039901&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-14351-8
DO - 10.1038/s41467-020-14351-8
M3 - Article
C2 - 32024845
AN - SCOPUS:85079039901
SN - 2041-1723
VL - 11
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 730
ER -