TY - JOUR
T1 - Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice
AU - Gardner, Erin R.
AU - Smith, Nicola F.
AU - Figg, William D.
AU - Sparreboom, Alex
N1 - Funding Information:
This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.
Funding Information:
This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400.* The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
PY - 2009
Y1 - 2009
N2 - Background. Imatinib, a tyrosine kinase inhibitor currently approved for treatment of several malignancies, has been shown to be a substrate for multiple efflux-transporter proteins, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP). The effect of inhibiting these transporters on tissue exposure to imatinib remains unclear. Objective. To assess the role of these transporters on drug disposition, 50 mg/kg imatinib was administered to Balb/C mice, 30 minutes after receiving tariquidar (10 mg/kg), an inhibitor of both ABCB1 and ABCG2, or vehicle, via oral gavage. Methods. Quantitative determination of imatinib in mouse plasma, liver and brain was performed using a newly-developed and validated liquid-chromatography-mass spectrometric method. Results: Exposure to imatinib was 2.2-fold higher in plasma, liver and brain in mice that received tariquidar, as compared to those that received the vehicle (P = 0.001). The peak plasma concentration did not increase substantially, suggesting that tariquidar is affecting the distribution, metabolism and/or excretion of imatinib, rather than absorption. Though tariquidar increased the absolute exposure of imatinib, the brain-to-plasma ratio of imatinib was unaffected. Conclusion. This study suggests that intentional inhibition of ABCB1 and ABCG2 function at the blood-brain barrier is unlikely to significantly improve clinical outcome of imatinib with currently used dosing regimens.
AB - Background. Imatinib, a tyrosine kinase inhibitor currently approved for treatment of several malignancies, has been shown to be a substrate for multiple efflux-transporter proteins, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP). The effect of inhibiting these transporters on tissue exposure to imatinib remains unclear. Objective. To assess the role of these transporters on drug disposition, 50 mg/kg imatinib was administered to Balb/C mice, 30 minutes after receiving tariquidar (10 mg/kg), an inhibitor of both ABCB1 and ABCG2, or vehicle, via oral gavage. Methods. Quantitative determination of imatinib in mouse plasma, liver and brain was performed using a newly-developed and validated liquid-chromatography-mass spectrometric method. Results: Exposure to imatinib was 2.2-fold higher in plasma, liver and brain in mice that received tariquidar, as compared to those that received the vehicle (P = 0.001). The peak plasma concentration did not increase substantially, suggesting that tariquidar is affecting the distribution, metabolism and/or excretion of imatinib, rather than absorption. Though tariquidar increased the absolute exposure of imatinib, the brain-to-plasma ratio of imatinib was unaffected. Conclusion. This study suggests that intentional inhibition of ABCB1 and ABCG2 function at the blood-brain barrier is unlikely to significantly improve clinical outcome of imatinib with currently used dosing regimens.
UR - http://www.scopus.com/inward/record.url?scp=68749104738&partnerID=8YFLogxK
U2 - 10.1186/1756-9966-28-99
DO - 10.1186/1756-9966-28-99
M3 - Article
C2 - 19591692
AN - SCOPUS:68749104738
SN - 1756-9966
VL - 28
JO - Journal of Experimental and Clinical Cancer Research
JF - Journal of Experimental and Clinical Cancer Research
IS - 1
M1 - 99
ER -