Intrawound antibiotic powder decreases frequency of deep infection and severity of heterotopic ossification in combat lower extremity amputations

Gabriel J. Pavey, Peter M. Formby, Benjamin W. Hoyt, Scott C. Wagner, Jonathan A. Forsberg, Benjamin K. Potter*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

BackgroundAmputations sustained owing to combat-related blast injuries are at high risk for deep infection and development of heterotopic ossification, which can necessitate reoperation and place immense strain on the patient. Surgeons at our institution began use of intrawound antibiotic powder at the time of closure in an effort to decrease the rate of these surgical complications after initial and revision amputations, supported by compelling clinical evidence and animal models of blast injuries. Antibiotic powder may be useful in reducing the risk of these infections, but human studies on this topic thus far have been inconclusive.PurposeWe sought to determine whether administration of intrawound antibiotic powder at the time of closure would (1) decrease the risk of subsequent deep infections of major lower-extremity combat-related amputations, and (2) limit formation and decrease severity of heterotopic ossification common in the combat-related traumatic residual limb.MethodsBetween 2009 and 2015, 252 major lower extremity initial and revision amputations were performed by a single surgeon. Revision cases were excluded if performed specifically to address deep infection, leaving 223 amputations (88.5%) for this retrospective analysis. We reviewed medical records to collect patient information, returns to the operating room for subsequent infection, and microbiologic culture results. We also reviewed radiographs taken at least 3 months after surgery to determine the presence and severity of heterotopic ossification using the Walter Reed classification system. We grouped cases according to whether limbs underwent initial or revision amputations, and whether the limbs had a history of a prior infection. Apart from the use of antibiotic powder and duration of followup, the groups did not differ in terms of age, mechanism of injury, or sex. We then calculated the absolute risk reduction for infection and heterotopic ossification and the number needed to treat to prevent an infection.ResultsOverall, administration of antibiotic powder resulted in a 13% absolute risk reduction of deep infection (14 of 82 [17%] versus 42 of 141 [30%]; p = 0.03; 95% CI, 0.20%-24.72%). In revision amputation surgery, the absolute risk reduction of infection with antibiotic powder use was 16% overall (eight of 58 versus 17 of 57; 95% CI, 1.21%-30.86%), and 25% for previously infected limbs (eight of 46 versus 14 of 33; 95% CI, 4.93%-45.14%). The number needed to treat to prevent one additional deep infection in amputation surgery is eight in initial amputations, seven in revision amputations, and four for revision amputation surgery on previously infected limbs. With the numbers available, we observed no reduction in the risk of heterotopic ossification with antibiotic powder use, but severity was decreased in the treatment group in terms of the number of residual limbs with moderate or severe heterotopic ossification (three of 12 versus 19 of 34; p = 0.03).ConclusionsOur findings show that administration of intrawound antibiotic powder reduces deep infection in residual limbs of combat amputees, particularly in the setting of revision amputation surgery in apparently aseptic residual limbs at the time of the surgery. Furthermore, administration of antibiotic powder for amputations at time of initial closure decreases the severity of heterotopic ossification formation, providing a low-cost adjunct to decrease the risk of two complications common to amputation surgery.

Original languageEnglish
Pages (from-to)802-810
Number of pages9
JournalClinical Orthopaedics and Related Research
Volume477
Issue number4
DOIs
StatePublished - 1 Apr 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Intrawound antibiotic powder decreases frequency of deep infection and severity of heterotopic ossification in combat lower extremity amputations'. Together they form a unique fingerprint.

Cite this