Linking inflammation, cardiorespiratory variability, and neural control in acute inflammation via computational modeling

Thomas E. Dick, Yaroslav I. Molkov, Gary Nieman, Yee Hsee Hsieh, Frank J. Jacono, John Doyle, Jeremy D. Scheff, Steve E. Calvano, Ioannis P. Androulakis, Gary An, Yoram Vodovotz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

Original languageEnglish
Article numberArticle 222
JournalFrontiers in Physiology
Volume3 JUL
StatePublished - 2012
Externally publishedYes


  • Heart rate variability
  • Inflammation
  • Mathematical model
  • Neural control
  • Physiologic variability


Dive into the research topics of 'Linking inflammation, cardiorespiratory variability, and neural control in acute inflammation via computational modeling'. Together they form a unique fingerprint.

Cite this