TY - JOUR
T1 - Localized deferoxamine injection augments vascularity and improves bony union in pathologic fracture healing after radiotherapy
AU - Donneys, Alexis
AU - Weiss, Daniela M.
AU - Deshpande, Sagar S.
AU - Ahsan, Salman
AU - Tchanque-Fossuo, Catherine N.
AU - Sarhaddi, Deniz
AU - Levi, Benjamin
AU - Goldstein, Steven A.
AU - Buchman, Steven R.
N1 - Funding Information:
Funding support provided by NIH RO1 CA 12587–01 to S. R. Buchman and “Training Grant in Trauma, Burn and Wound Healing Research”, NIH T32-GM 008616 , for Alexis Donneys. The authors would like to thank Charles Roehm for fabrication of fixator devices, Joseph Perosky for μCT assistance, Alexis Baker and Brian MacCready for microscopic video recording, and Behdod Poushanchi for animal care.
PY - 2013/1
Y1 - 2013/1
N2 - Background: Medically based efforts and alternative treatment strategies to prevent or remediate the corrosive effects of radiotherapy on pathologic fracture healing have failed to produce clear and convincing evidence of success. Establishing an effective pharmacologic option to prevent or treat the development of non-unions in this setting could have immense therapeutic potential. Experimental studies have shown that deferoxamine (DFO), an iron-chelating agent, bolsters vascularity and subsequently enhances normal fracture healing when injected locally into a fracture callus in long bone animal models. Since radiotherapy is known to impede angiogenesis, we hypothesized that the pharmacologic addition of DFO would serve to mitigate the effects of radiotherapy on new vessel formation in vitro and in vivo. Materials and Methods: In vitro investigation of angiogenesis was conducted utilizing HUVEC cells in Matrigel. Endothelial tubule formation assays were divided into four groups: Control, Radiated, Radiated. +. Low-Dose DFO and Radiated. + High-Dose DFO. Tubule formation was quantified microscopically and video recorded for the four groups simultaneously during the experiment In vivo, three groups of Sprague-Dawley rats underwent external fixator placement and fracture osteotomy of the left mandible. Two groups received pre-operative fractionated radiotherapy, and one of these groups was treated with DFO after fracture repair. After 40. days, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. Results: In vitro, endothelial tubule formation assays demonstrated that DFO mitigated the deleterious effects of radiation on angiogenesis. Further, high-dose DFO cultures appeared to organize within 2. h of incubation and achieved a robust network that was visibly superior to all other experimental groups in an accelerated fashion. In vivo, animals subjected to a human equivalent dose of radiotherapy (HEDR) and left mandibular fracture demonstrated quantifiably diminished μCT metrics of vascular density, as well as a 75% incidence of associated non-unions. The addition of DFO in this setting markedly improved vascularity as demonstrated with 3D angiographic modeling. In addition, we observed an increased incidence of bony unions in the DFO treated group when compared to radiated fractures without treatment (67% vs. 25% respectively). Conclusion: Our data suggest that selectively targeting angiogenesis with localized DFO injections is sufficient to remediate the associated severe vascular diminution resulting from a HEDR. Perhaps the most consequential and clinically relevant finding was the ability to reduce the incidence of non-unions in a model where fracture healing was not routinely observed.
AB - Background: Medically based efforts and alternative treatment strategies to prevent or remediate the corrosive effects of radiotherapy on pathologic fracture healing have failed to produce clear and convincing evidence of success. Establishing an effective pharmacologic option to prevent or treat the development of non-unions in this setting could have immense therapeutic potential. Experimental studies have shown that deferoxamine (DFO), an iron-chelating agent, bolsters vascularity and subsequently enhances normal fracture healing when injected locally into a fracture callus in long bone animal models. Since radiotherapy is known to impede angiogenesis, we hypothesized that the pharmacologic addition of DFO would serve to mitigate the effects of radiotherapy on new vessel formation in vitro and in vivo. Materials and Methods: In vitro investigation of angiogenesis was conducted utilizing HUVEC cells in Matrigel. Endothelial tubule formation assays were divided into four groups: Control, Radiated, Radiated. +. Low-Dose DFO and Radiated. + High-Dose DFO. Tubule formation was quantified microscopically and video recorded for the four groups simultaneously during the experiment In vivo, three groups of Sprague-Dawley rats underwent external fixator placement and fracture osteotomy of the left mandible. Two groups received pre-operative fractionated radiotherapy, and one of these groups was treated with DFO after fracture repair. After 40. days, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. Results: In vitro, endothelial tubule formation assays demonstrated that DFO mitigated the deleterious effects of radiation on angiogenesis. Further, high-dose DFO cultures appeared to organize within 2. h of incubation and achieved a robust network that was visibly superior to all other experimental groups in an accelerated fashion. In vivo, animals subjected to a human equivalent dose of radiotherapy (HEDR) and left mandibular fracture demonstrated quantifiably diminished μCT metrics of vascular density, as well as a 75% incidence of associated non-unions. The addition of DFO in this setting markedly improved vascularity as demonstrated with 3D angiographic modeling. In addition, we observed an increased incidence of bony unions in the DFO treated group when compared to radiated fractures without treatment (67% vs. 25% respectively). Conclusion: Our data suggest that selectively targeting angiogenesis with localized DFO injections is sufficient to remediate the associated severe vascular diminution resulting from a HEDR. Perhaps the most consequential and clinically relevant finding was the ability to reduce the incidence of non-unions in a model where fracture healing was not routinely observed.
KW - Angiogenesis
KW - Deferoxamine
KW - Non-union
KW - Osteoradionecrosis
KW - Pathologic fracture
KW - Radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=84868591772&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2012.10.014
DO - 10.1016/j.bone.2012.10.014
M3 - Article
C2 - 23085084
AN - SCOPUS:84868591772
SN - 8756-3282
VL - 52
SP - 318
EP - 325
JO - Bone
JF - Bone
IS - 1
ER -