TY - JOUR
T1 - Loss of protein kinase Cθ, Bcl10, or Malt1 selectively impairs proliferation and NF-κB activation in the CD4+ T cell subset
AU - Kingeter, Lara M.
AU - Schaefer, Brian C.
PY - 2008/11/1
Y1 - 2008/11/1
N2 - The cytosolic proteins protein kinase Cθ (PKCθ), Bcl10, and Malt1 play critical roles in TCR signaling to the transcription factor NF-κB. Our data confirm that CD4+ T cells from PKCθ, Bcl10, and Malt1 knockout mice show severe impairment of proliferation in response to TCR stimulation. Unexpectedly, we find that knockout CD8+ T cells proliferate to a similar extent as wild-type cells in response to strong TCR signals, although a survival defect prevents their accumulation. Both CD4+ and CD8+ knockout T cells express activation markers, including CD25, following TCR stimulation. Addition of exogenous IL-2 rescues survival of knockout CD4+ and CD8+ T cells, but fails to overcome the proliferation defect of CD4+ T cells. CD4 + T cells from knockout mice are extremely deficient in TCR-induced NF-κB activation, whereas NF-κB activation is only partially impaired in CD8+ T cells. Overall, our results suggest that defects in TCR signaling through PKCθ, Bcl10, and Malt1 predominantly impair NF-κB activation and downstream functional responses of CD4+ T cells. In contrast, CD8+ T cells maintain substantial NF-κB signaling, implying the existence of a significant TCR-regulated NF-κB activation pathway in CD8+ T cells that is independent of PKCθ, Bcl10, and Malt1.
AB - The cytosolic proteins protein kinase Cθ (PKCθ), Bcl10, and Malt1 play critical roles in TCR signaling to the transcription factor NF-κB. Our data confirm that CD4+ T cells from PKCθ, Bcl10, and Malt1 knockout mice show severe impairment of proliferation in response to TCR stimulation. Unexpectedly, we find that knockout CD8+ T cells proliferate to a similar extent as wild-type cells in response to strong TCR signals, although a survival defect prevents their accumulation. Both CD4+ and CD8+ knockout T cells express activation markers, including CD25, following TCR stimulation. Addition of exogenous IL-2 rescues survival of knockout CD4+ and CD8+ T cells, but fails to overcome the proliferation defect of CD4+ T cells. CD4 + T cells from knockout mice are extremely deficient in TCR-induced NF-κB activation, whereas NF-κB activation is only partially impaired in CD8+ T cells. Overall, our results suggest that defects in TCR signaling through PKCθ, Bcl10, and Malt1 predominantly impair NF-κB activation and downstream functional responses of CD4+ T cells. In contrast, CD8+ T cells maintain substantial NF-κB signaling, implying the existence of a significant TCR-regulated NF-κB activation pathway in CD8+ T cells that is independent of PKCθ, Bcl10, and Malt1.
UR - http://www.scopus.com/inward/record.url?scp=58749114028&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.181.9.6244
DO - 10.4049/jimmunol.181.9.6244
M3 - Article
C2 - 18941215
AN - SCOPUS:58749114028
SN - 0022-1767
VL - 181
SP - 6244
EP - 6254
JO - Journal of Immunology
JF - Journal of Immunology
IS - 9
ER -