Lower Extremity Joint Contributions to Trunk Control During Walking in Persons with Transtibial Amputation

Adam J. Yoder*, Amy B. Silder, Shawn Farrokhi, Christopher L. Dearth, Brad D. Hendershot

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Controlled trunk motion is crucial for balance and stability during walking. Persons with lower extremity amputation often exhibit abnormal trunk motion, yet underlying mechanisms are not well understood nor have optimal clinical interventions been established. The aim of this work was to characterize associations between altered lower extremity joint moments and altered trunk dynamics in persons with unilateral, transtibial amputation (TTA). Full-body gait data were collected from 10 persons with TTA and 10 uninjured persons walking overground (~1.4 m/s). Experimentally-measured trunk angular accelerations were decomposed into constituent accelerations caused by net joint moments throughout the body using an induced acceleration analysis. Results showed persons with TTA had similar ankle moment magnitude relative to uninjured persons (P > 0.05), but greater trunk angular acceleration induced by the prosthetic ankle which acted to lean the trunk ipsilaterally (P = 0.003). Additionally, persons with TTA had a reduced knee extensor moment relative to uninjured persons (P < 0.001), resulting in lesser sagittal and frontal induced trunk angular accelerations (P < 0.001). These data indicate kinetic compensations at joints other than the lumbar and hip contribute to altered trunk dynamics in persons with a unilateral TTA. Findings may inform development of new clinical strategies to modify problematic trunk motion.

Original languageEnglish
Article number12267
JournalScientific Reports
Issue number1
StatePublished - 1 Dec 2019
Externally publishedYes


Dive into the research topics of 'Lower Extremity Joint Contributions to Trunk Control During Walking in Persons with Transtibial Amputation'. Together they form a unique fingerprint.

Cite this