TY - JOUR
T1 - Mesenchymal stem cell therapy for attenuation of scar formation during wound healing
AU - Jackson, Wesley M.
AU - Nesti, Leon J.
AU - Tuan, Rocky S.
N1 - Funding Information:
Supported in part by the National Institutes of Health Intramural Research Program (Z01 AR41131) and from the Commonwealth of Pennsylvania Department of Health. Additional support provided by the Department of Defense Military Amputee Research Program at the Walter Reed Army Medical Center (Department of the Army, Grant No. PO5-A011), the Peer-reviewed Orthopedic Research Program (Department of the Army, Grants No. W81XWH-10-2-0084 and W81XWH-10-2-0085), and the Defense Medical Research Development Program (Department of the Army, Grant No. D10_I_AR_J8_981), for which the U.S. Army Medical Research Acquisition Activity 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition offi ce. The views expressed in this manuscript are those of the authors alone and do not represent the views, policies or offi cial positions of, nor should any offi cial endorsement be inferred on the part of, the United States Government, the United States Army, the Uniformed Services University of the Health Sciences (USU), or the Department of Defense. Nor do they represent those of the National Institutes of Health or the Department of Health and Human Services. Figure one was produced using Sevier Medical Art.
PY - 2012
Y1 - 2012
N2 - Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
AB - Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
UR - http://www.scopus.com/inward/record.url?scp=84861830404&partnerID=8YFLogxK
U2 - 10.1186/scrt111
DO - 10.1186/scrt111
M3 - Article
C2 - 22668751
AN - SCOPUS:84861830404
SN - 1757-6512
VL - 3
JO - Stem Cell Research and Therapy
JF - Stem Cell Research and Therapy
IS - 3
M1 - 20
ER -