TY - JOUR
T1 - Molecular signatures of lymph node status by intrinsic subtype
T2 - Gene expression analysis of primary breast tumors from patients with and without metastatic lymph nodes
AU - Shriver, Craig D.
AU - Hueman, Matthew T.
AU - Ellsworth, Rachel E.
N1 - Publisher Copyright:
© 2015 Shriver et al.
PY - 2014/12
Y1 - 2014/12
N2 - Background: Identification of a gene expression signature in primary breast tumors that could classify patients by lymph node status would allow patients to avoid the morbidities of surgical disruption of the lymph nodes. Attempts to identify such a signature have, to date, been unsuccessful. Because breast tumor subtypes have unique molecular characteristics and different sites of metastasis, molecular signatures for lymph node involvement may vary by subtype. Methods: Gene expression data was generated from HG U133A 2.0 arrays for 135 node positive and 210 node negative primary breast tumors. Intrinsic subtype was assigned using the BreastPRS. Differential gene expression analysis was performed using one-way ANOVA using lymph node status as the variable with a False-discovery rate <0.05, to define significance. Results: Luminal A tumors were most common (51%) followed by basal-like (27%), HER2-enriched (14%) luminal B (7%) and normal-like (1%). Basal-like and luminal A tumors were less likely to have metastatic lymph nodes (35% and 37%, respectively) compared to luminal B or HER2-enriched (52% and 51%, respectively). No differentially expressed genes associated with lymph node status were detected when all tumors were considered together or within each subtype. Conclusions: Gene expression patterns from the primary tumor are not able to stratify patients by lymph node status. Although the primary breast tumor may influence tumor cell dissemination, once metastatic cells enter the lymphatics, it is likely that characteristics of the lymph node microenvironment, such as establishment of a pre-metastatic niche and release of pro-survival factors, determine which cells are able to colonize. The inability to utilize molecular profiles from the primary tumor to determine lymph node status suggest that other avenues of investigation, such as how systemic factors including diminished immune response or genetic susceptibility contribute to metastasis, may be critical in the development of tools for non-surgical assessment of lymph node status with a corresponding reduction in downstream sequelae associated with disruption of the lymphatics.
AB - Background: Identification of a gene expression signature in primary breast tumors that could classify patients by lymph node status would allow patients to avoid the morbidities of surgical disruption of the lymph nodes. Attempts to identify such a signature have, to date, been unsuccessful. Because breast tumor subtypes have unique molecular characteristics and different sites of metastasis, molecular signatures for lymph node involvement may vary by subtype. Methods: Gene expression data was generated from HG U133A 2.0 arrays for 135 node positive and 210 node negative primary breast tumors. Intrinsic subtype was assigned using the BreastPRS. Differential gene expression analysis was performed using one-way ANOVA using lymph node status as the variable with a False-discovery rate <0.05, to define significance. Results: Luminal A tumors were most common (51%) followed by basal-like (27%), HER2-enriched (14%) luminal B (7%) and normal-like (1%). Basal-like and luminal A tumors were less likely to have metastatic lymph nodes (35% and 37%, respectively) compared to luminal B or HER2-enriched (52% and 51%, respectively). No differentially expressed genes associated with lymph node status were detected when all tumors were considered together or within each subtype. Conclusions: Gene expression patterns from the primary tumor are not able to stratify patients by lymph node status. Although the primary breast tumor may influence tumor cell dissemination, once metastatic cells enter the lymphatics, it is likely that characteristics of the lymph node microenvironment, such as establishment of a pre-metastatic niche and release of pro-survival factors, determine which cells are able to colonize. The inability to utilize molecular profiles from the primary tumor to determine lymph node status suggest that other avenues of investigation, such as how systemic factors including diminished immune response or genetic susceptibility contribute to metastasis, may be critical in the development of tools for non-surgical assessment of lymph node status with a corresponding reduction in downstream sequelae associated with disruption of the lymphatics.
KW - Breast cancer metastasis
KW - Lymph node status
KW - Subtype
UR - http://www.scopus.com/inward/record.url?scp=84924190181&partnerID=8YFLogxK
U2 - 10.1186/s13046-014-0116-3
DO - 10.1186/s13046-014-0116-3
M3 - Article
C2 - 25551369
AN - SCOPUS:84924190181
SN - 1756-9966
VL - 33
JO - Journal of Experimental and Clinical Cancer Research
JF - Journal of Experimental and Clinical Cancer Research
IS - 1
M1 - 13046
ER -