Mouse Digit Tip Regeneration Is Mechanical Load Dependent

Connor P. Dolan*, Felisha Imholt, Tae Jung Yang, Rihana Bokhari, Joshua Gregory, Mingquan Yan, Osama Qureshi, Katherine Zimmel, Kirby M. Sherman, Alyssa Falck, Ling Yu, Eric Leininger, Regina Brunauer, Larry J. Suva, Dana Gaddy, Lindsay A. Dawson, Ken Muneoka

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans.

Original languageEnglish
Pages (from-to)312-322
Number of pages11
JournalJournal of Bone and Mineral Research
Volume37
Issue number2
DOIs
StatePublished - Feb 2022
Externally publishedYes

Keywords

  • BLASTEMA
  • DE NOVO BONE FORMATION
  • DIGIT
  • HINDLIMB UNLOADING
  • MAMMALIAN REGENERATION
  • MECHANICAL UNLOADING

Fingerprint

Dive into the research topics of 'Mouse Digit Tip Regeneration Is Mechanical Load Dependent'. Together they form a unique fingerprint.

Cite this