TY - JOUR
T1 - Non-canonical Wnt signaling contributes to ventilator-induced lung injury through upregulation of WISP1 expression
AU - Xia, Yue Feng
AU - Chang, Jing
AU - Yang, Jin Feng
AU - Ouyang, Wen
AU - Pitt, Bruce
AU - Billiar, Timothy
AU - Zhang, Li Ming
N1 - Publisher Copyright:
© Spandidos Publications. All rights reserved.
PY - 2019/3
Y1 - 2019/3
N2 - Mechanical ventilation may cause ventilator-induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non-canonical Wnt signaling pathways were activated in VILI. However, the role of non-canonical Wnt signaling in the pathogenesis of VILI remains unclear. The present study aimed to analyze the potential role of non-canonical Wnt signaling in VILI pathogenesis. Lung injury was assessed via Evans blue albumin permeability and histological scoring, as well as by inflammatory cytokine expression and total protein concentration in bronchoalveolar lavage fluid. The relative protein expression of canonical and non-canonical Wnt signaling pathway components were examined via western blotting and immunohistochemistry. The results demonstrated that 6 h of mechanical ventilation at low tidal volume (LTV; 6 ml/kg) or moderate tidal volume (MTV; 12 ml/kg) induced lung injury in sensitive A/J mice. Ventilation with MTV increased the protein levels of Wnt-induced secreted protein 1 (WISP1), Rho-associated protein kinase 1 (ROCK1), phosphorylated (p)-Ras homolog gene family, member A and p-C-Jun N-terminal kinase (JNK). Inhibition of ROCK1 by Y27632 and JNK by SP600125 attenuated MTV-induced lung injury and decreased the expression of proteins involved in non-canonical Wnt signaling, including WISP1. In conclusion, non-canonical Wnt signaling participates in VILI by modulating WISP1 expression, which has been previously noted as critical for VILI development. Therefore, the non-canonical Wnt signaling pathway may provide a preventive and therapeutic target in VILI.
AB - Mechanical ventilation may cause ventilator-induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non-canonical Wnt signaling pathways were activated in VILI. However, the role of non-canonical Wnt signaling in the pathogenesis of VILI remains unclear. The present study aimed to analyze the potential role of non-canonical Wnt signaling in VILI pathogenesis. Lung injury was assessed via Evans blue albumin permeability and histological scoring, as well as by inflammatory cytokine expression and total protein concentration in bronchoalveolar lavage fluid. The relative protein expression of canonical and non-canonical Wnt signaling pathway components were examined via western blotting and immunohistochemistry. The results demonstrated that 6 h of mechanical ventilation at low tidal volume (LTV; 6 ml/kg) or moderate tidal volume (MTV; 12 ml/kg) induced lung injury in sensitive A/J mice. Ventilation with MTV increased the protein levels of Wnt-induced secreted protein 1 (WISP1), Rho-associated protein kinase 1 (ROCK1), phosphorylated (p)-Ras homolog gene family, member A and p-C-Jun N-terminal kinase (JNK). Inhibition of ROCK1 by Y27632 and JNK by SP600125 attenuated MTV-induced lung injury and decreased the expression of proteins involved in non-canonical Wnt signaling, including WISP1. In conclusion, non-canonical Wnt signaling participates in VILI by modulating WISP1 expression, which has been previously noted as critical for VILI development. Therefore, the non-canonical Wnt signaling pathway may provide a preventive and therapeutic target in VILI.
KW - WNT1-inducible secreted protein 1
KW - c-Jun N-terminal kinase
KW - low tidal volume
KW - moderate tidal volume
KW - non-canonical Wnt signaling pathway
KW - ventilator-induced lung injury
UR - http://www.scopus.com/inward/record.url?scp=85061033016&partnerID=8YFLogxK
U2 - 10.3892/ijmm.2019.4067
DO - 10.3892/ijmm.2019.4067
M3 - Article
C2 - 30664165
AN - SCOPUS:85061033016
SN - 1107-3756
VL - 43
SP - 1217
EP - 1228
JO - International Journal of Molecular Medicine
JF - International Journal of Molecular Medicine
IS - 3
ER -