TY - JOUR
T1 - Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy
AU - Crane, Nicole J.
AU - Pinto, Peter A.
AU - Hale, Douglas
AU - Gage, Frederick A.
AU - Tadaki, Doug
AU - Kirk, Allan D.
AU - Levin, Ira W.
AU - Elster, Eric A.
N1 - Funding Information:
The authors would like to thank Kambiz Tajkarimi, Ben McHone, Jack Liu and Marie McHenry for their assistance with the porcine model in this experiment. The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. This work was prepared as part of the official duties of a military service member (E. E.). Title 17 U.S.C. §105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. We also acknowledge support from the intramural program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.
PY - 2008
Y1 - 2008
N2 - Background. Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods. We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device) camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results. We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI) intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96). The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05). Conclusion. Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.
AB - Background. Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods. We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device) camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results. We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI) intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96). The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05). Conclusion. Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.
UR - http://www.scopus.com/inward/record.url?scp=44249089080&partnerID=8YFLogxK
U2 - 10.1186/1471-2482-8-8
DO - 10.1186/1471-2482-8-8
M3 - Article
C2 - 18419819
AN - SCOPUS:44249089080
SN - 1471-2482
VL - 8
JO - BMC Surgery
JF - BMC Surgery
M1 - 8
ER -