Partial volume estimation and the fuzzy C-means algorithm

Dzung L. Pham*, Jerry I. Prince

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

12 Scopus citations

Abstract

Partial volume averaging (PVA) is present in nearly all practical imaging situations, medical imaging in particular. One method that has been used to account for the effects of PVA is the fuzzy c-means algorithm (FCM). We propose a new method for estimating the partial volume coefficient of each class at each voxel in a given image using a Bayesian statistical model. A prior probability on the partial volume coefficients is used to reflect how most voxels in the image are expected to be pure. We then show that the results obtained by this method are quite similar and in some cases equivalent to results obtained using FCM. Both algorithms are demonstrated on a magnetic resonance image of the brain.

Original languageEnglish
Pages819-822
Number of pages4
StatePublished - 1998
EventProceedings of the 1998 International Conference on Image Processing, ICIP. Part 2 (of 3) - Chicago, IL, USA
Duration: 4 Oct 19987 Oct 1998

Conference

ConferenceProceedings of the 1998 International Conference on Image Processing, ICIP. Part 2 (of 3)
CityChicago, IL, USA
Period4/10/987/10/98

Cite this