Pathogenesis of Escherichia coli O157:H7 strain 86-24 following oral infection of BALB/c mice with an intact commensal flora

Krystle L. Mohawk, Angela R. Melton-Celsa, Tonia Zangari, Erica E. Carroll, Alison D. O'Brien*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Escherichia coli O157:H7 is a food-borne pathogen that can cause hemorrhagic colitis and, occasionally, hemolytic uremic syndrome, a sequela of infection that can result in renal failure and death. Here we sought to model the pathogenesis of orally-administered E. coli O157:H7 in BALB/c mice with an intact intestinal flora. First, we defined the optimal dose that permitted sustained fecal shedding of E. coli O157:H7 over 7 days (∼109 colony forming units). Next, we monitored the load of E. coli O157:H7 in intestinal sections over time and observed that the cecum was consistently the tissue with the highest E. coli O157:H7 recovery. We then followed the expression of two key E. coli O157:H7 virulence factors, the adhesin intimin and Shiga toxin type 2, and detected both proteins early in infection when bacterial burdens were highest. Additionally, we noted that during infection, animals lost weight and ∼30% died. Moribund animals also exhibited elevated levels of blood urea nitrogen, and, on necropsy, showed evidence of renal tubular damage. We conclude that conventional mice inoculated orally with high doses of E. coli O157:H7 can be used to model both intestinal colonization and subsequent development of certain extraintestinal manifestations of E. coli O157:H7 disease.

Original languageEnglish
Pages (from-to)131-142
Number of pages12
JournalMicrobial Pathogenesis
Volume48
Issue number3-4
DOIs
StatePublished - Mar 2010
Externally publishedYes

Keywords

  • Escherichia coli O157:H7 mouse model
  • intimin
  • Shiga toxin

Cite this