TY - JOUR
T1 - Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24
AU - UKGPCS Collaborators
AU - The PRACTICAL Consortium
AU - Karunamuni, Roshan A.
AU - Huynh-Le, Minh Phuong
AU - Fan, Chun C.
AU - Thompson, Wesley
AU - Lui, Asona
AU - Martinez, Maria Elena
AU - Rose, Brent S.
AU - Mahal, Brandon
AU - Eeles, Rosalind A.
AU - Kote-Jarai, Zsofia
AU - Muir, Kenneth
AU - Lophatananon, Artitaya
AU - Tangen, Catherine M.
AU - Goodman, Phyllis J.
AU - Thompson, Ian M.
AU - Blot, William J.
AU - Zheng, Wei
AU - Kibel, Adam S.
AU - Drake, Bettina F.
AU - Cussenot, Olivier
AU - Cancel-Tassin, Géraldine
AU - Menegaux, Florence
AU - Truong, Thérèse
AU - Park, Jong Y.
AU - Lin, Hui Yi
AU - Taylor, Jack A.
AU - Bensen, Jeannette T.
AU - Mohler, James L.
AU - Fontham, Elizabeth T.H.
AU - Multigner, Luc
AU - Blanchet, Pascal
AU - Brureau, Laurent
AU - Romana, Marc
AU - Leach, Robin J.
AU - John, Esther M.
AU - Fowke, Jay H.
AU - Bush, William S.
AU - Aldrich, Melinda C.
AU - Crawford, Dana C.
AU - Cullen, Jennifer
AU - Petrovics, Gyorgy
AU - Parent, Marie Élise
AU - Hu, Jennifer J.
AU - Sanderson, Maureen
AU - Mills, Ian G.
AU - Andreassen, Ole A.
AU - Dale, Anders M.
AU - Seibert, Tyler M.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/2
Y1 - 2022/2
N2 - Background: We previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ. Materials and methods: Genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with the performance of PHS46+African. A calibration factor (CF) was formulated using Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC. Results: CF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our data set with 1000 Genomes, we identified significant associations between continental and calibration groupings. Conclusion: We identified PCs within 8q24 that were strongly associated with the performance of PHS46+African. Further research to improve the clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry.
AB - Background: We previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ. Materials and methods: Genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with the performance of PHS46+African. A calibration factor (CF) was formulated using Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC. Results: CF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our data set with 1000 Genomes, we identified significant associations between continental and calibration groupings. Conclusion: We identified PCs within 8q24 that were strongly associated with the performance of PHS46+African. Further research to improve the clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry.
UR - http://www.scopus.com/inward/record.url?scp=85108196944&partnerID=8YFLogxK
U2 - 10.1038/s41391-021-00403-7
DO - 10.1038/s41391-021-00403-7
M3 - Article
C2 - 34127801
AN - SCOPUS:85108196944
SN - 1365-7852
VL - 25
SP - 229
EP - 237
JO - Prostate Cancer and Prostatic Diseases
JF - Prostate Cancer and Prostatic Diseases
IS - 2
ER -