TY - JOUR
T1 - Pilot and feasibility study
T2 - Prospective proteomic profiling of mammary epithelial cells from high-risk women provides evidence of activation of pro-survival pathways
AU - Ibarra-Drendall, Catherine
AU - Troch, Michelle M.
AU - Barry, William T.
AU - Broadwater, Gloria
AU - Petricoin, Emanuel F.
AU - Wulfkuhle, Julia
AU - Liotta, Lance A.
AU - Lem, Siya
AU - Baker, Joseph C.
AU - Ford, Anne C.
AU - Wilke, Lee G.
AU - Zalles, Carola
AU - Kuderer, Nicole M.
AU - Hoffman, Abigail W.
AU - Shivraj, Melanie
AU - Mehta, Priya
AU - Williams, Jamila
AU - Tolbert, Nora
AU - Lee, Laurie W.
AU - Pilie, Patrick G.
AU - Yu, Dihua
AU - Seewaldt, Victoria L.
N1 - Funding Information:
Acknowledgments The authors thank Susan G. Komen for the Cure foundation for financial support to Drs. Yu and Seewaldt (KG091020) and Dr. Ibarra-Drendall (KG090730). Dr. Seewaldt is also supported by the National Institute of Health/National Cancer Institute (R01CA88799 and R01CA114068). Additional financial support was provided by NCI/AVON Partners in Progress Grant 3 P30 CA014236-32S1 to Drs. Seewaldt and Yu.
PY - 2012/4
Y1 - 2012/4
N2 - Normal mammary gland homeostasis requires the coordinated regulation of protein signaling networks. However, we have little prospective information on whether activation of protein signaling occurs in premalignant mammary epithelial cells, as represented by cells with cytological atypia from women who are at high risk for breast cancer. This information is critical for understanding the role of deregulated signaling pathways in the initiation of breast cancer and for developing targeted prevention and/or treatment strategies for breast cancer in the future. In this pilot and feasibility study, we examined the expression of 52 phosphorylated, total, and cleaved proteins in 31 microdissected Random Periareolar Fine Needle Aspiration (RPFNA) samples by high-throughput Reverse Phase Protein Microarray. Unsupervised hierarchical clustering analysis indicated the presence of four clusters of proteins that represent the following signaling pathways: (1) receptor tyrosine kinase/Akt/mammalian target of rapamycin (RTK/Akt/mTOR), (2) RTK/Akt/extracellular signal-regulated kinase (RTK/Akt/ERK), (3) mitochondrial apoptosis, and (4) indeterminate. Clusters 1 through 3 comprised moderately to highly expressed proteins, while Cluster 4 comprised proteins that are lowly expressed in a majority of RPFNA samples. Our exploratory study showed that the interlinked components of mitochondrial apoptosis pathway are highly expressed in all mammary epithelial cells obtained from high-risk women. In particular, the expression levels of anti-apoptotic Bcl-xL and pro-apoptotic Bad are positively correlated in both non-atypical and atypical samples (unadjusted P < 0.0001), suggesting a delicate balance between the pro-apoptotic and anti-apoptotic regulation of cell proliferation during the early steps of mammary carcinogenesis. Our feasibility study suggests that the activation of key proteins along the RTK/Akt pathway may tip this balance to cell survival. Taken together, our results demonstrate the feasibility of mapping proteomic signaling networks in limited RPFNA samples obtained from high-risk women and the promise of developing rational drug targets or preventative strategies for breast cancer in future proteomic studies with a larger cohort of high-risk women.
AB - Normal mammary gland homeostasis requires the coordinated regulation of protein signaling networks. However, we have little prospective information on whether activation of protein signaling occurs in premalignant mammary epithelial cells, as represented by cells with cytological atypia from women who are at high risk for breast cancer. This information is critical for understanding the role of deregulated signaling pathways in the initiation of breast cancer and for developing targeted prevention and/or treatment strategies for breast cancer in the future. In this pilot and feasibility study, we examined the expression of 52 phosphorylated, total, and cleaved proteins in 31 microdissected Random Periareolar Fine Needle Aspiration (RPFNA) samples by high-throughput Reverse Phase Protein Microarray. Unsupervised hierarchical clustering analysis indicated the presence of four clusters of proteins that represent the following signaling pathways: (1) receptor tyrosine kinase/Akt/mammalian target of rapamycin (RTK/Akt/mTOR), (2) RTK/Akt/extracellular signal-regulated kinase (RTK/Akt/ERK), (3) mitochondrial apoptosis, and (4) indeterminate. Clusters 1 through 3 comprised moderately to highly expressed proteins, while Cluster 4 comprised proteins that are lowly expressed in a majority of RPFNA samples. Our exploratory study showed that the interlinked components of mitochondrial apoptosis pathway are highly expressed in all mammary epithelial cells obtained from high-risk women. In particular, the expression levels of anti-apoptotic Bcl-xL and pro-apoptotic Bad are positively correlated in both non-atypical and atypical samples (unadjusted P < 0.0001), suggesting a delicate balance between the pro-apoptotic and anti-apoptotic regulation of cell proliferation during the early steps of mammary carcinogenesis. Our feasibility study suggests that the activation of key proteins along the RTK/Akt pathway may tip this balance to cell survival. Taken together, our results demonstrate the feasibility of mapping proteomic signaling networks in limited RPFNA samples obtained from high-risk women and the promise of developing rational drug targets or preventative strategies for breast cancer in future proteomic studies with a larger cohort of high-risk women.
KW - Atypical mammary cytology
KW - Biomarker development
KW - Breast cancer risk
KW - Cell survival
KW - Protein microarray
UR - http://www.scopus.com/inward/record.url?scp=84859109439&partnerID=8YFLogxK
U2 - 10.1007/s10549-011-1609-9
DO - 10.1007/s10549-011-1609-9
M3 - Article
C2 - 21647677
AN - SCOPUS:84859109439
SN - 0167-6806
VL - 132
SP - 487
EP - 498
JO - Breast Cancer Research and Treatment
JF - Breast Cancer Research and Treatment
IS - 2
ER -