TY - JOUR
T1 - Pivotal advance
T2 - The pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms
AU - Kaczorowski, David J.
AU - Afrazi, Amin
AU - Scott, Melanie J.
AU - Kwak, Joon H.
AU - Gill, Roop
AU - Edmonds, Rebecca D.
AU - Liu, Yujian
AU - Fan, Jie
AU - Billiar, Timothy R.
PY - 2010/10
Y1 - 2010/10
N2 - TLRs and complement are critical to the host response in sepsis, trauma, and ischemia/reperfusion. We hypothesize that TLR stimulation leads to synthesis and release of complement components by macrophages, an important source of extrahepatic complement. RAW264.7 macrophages or peritoneal macrophages from WT and TLR4-, TLR3-, TRIF-, or MyD88-deficient mice were cultured under standard conditions. In some experiments, cells were pretreated with inhibitors of MAPKs or a NF-κB inhibitor. Cells were stimulated with TLR ligands at known stimulatory concentrations. Intratracheal and i.p. injections were also performed in mice. RT-PCR, Western blotting, and immunocytochemistry were used for analysis. Using a RT-PCR-based panel, we demonstrate that of 18 complement components tested, factor B of the alternative pathway is the most robustly up-regulated complement component in macrophages in response to LPS. This up-regulation results in release of factor B into the media. Up-regulation of factor B by LPS is dependent on TLR4, TRIF, JNK, and NF-κB. A screen of other TLR ligands demonstrated that stimulation with poly I:C (dsRNA analog) also results in up-regulation of factor B, which is dependent on JNK and NF-κB but independent of TLR3 and TRIF. Up-regulation of factor B is also observed after intratracheal and i.p. injection of LPS or poly I:C in vivo. PRR stimulation profoundly influences production and release of factor B by macrophages. Understanding the mechanisms of PRR-mediated complement production may lead to strategies aimed at preventing tissue damage in diverse settings, including sepsis, trauma, and ischemia/reperfusion.
AB - TLRs and complement are critical to the host response in sepsis, trauma, and ischemia/reperfusion. We hypothesize that TLR stimulation leads to synthesis and release of complement components by macrophages, an important source of extrahepatic complement. RAW264.7 macrophages or peritoneal macrophages from WT and TLR4-, TLR3-, TRIF-, or MyD88-deficient mice were cultured under standard conditions. In some experiments, cells were pretreated with inhibitors of MAPKs or a NF-κB inhibitor. Cells were stimulated with TLR ligands at known stimulatory concentrations. Intratracheal and i.p. injections were also performed in mice. RT-PCR, Western blotting, and immunocytochemistry were used for analysis. Using a RT-PCR-based panel, we demonstrate that of 18 complement components tested, factor B of the alternative pathway is the most robustly up-regulated complement component in macrophages in response to LPS. This up-regulation results in release of factor B into the media. Up-regulation of factor B by LPS is dependent on TLR4, TRIF, JNK, and NF-κB. A screen of other TLR ligands demonstrated that stimulation with poly I:C (dsRNA analog) also results in up-regulation of factor B, which is dependent on JNK and NF-κB but independent of TLR3 and TRIF. Up-regulation of factor B is also observed after intratracheal and i.p. injection of LPS or poly I:C in vivo. PRR stimulation profoundly influences production and release of factor B by macrophages. Understanding the mechanisms of PRR-mediated complement production may lead to strategies aimed at preventing tissue damage in diverse settings, including sepsis, trauma, and ischemia/reperfusion.
KW - Complement
KW - Inflammation
KW - Toll-like receptors
UR - http://www.scopus.com/inward/record.url?scp=77955915400&partnerID=8YFLogxK
U2 - 10.1189/jlb.0809588
DO - 10.1189/jlb.0809588
M3 - Article
C2 - 20413727
AN - SCOPUS:77955915400
SN - 0741-5400
VL - 88
SP - 609
EP - 618
JO - Journal of Leukocyte Biology
JF - Journal of Leukocyte Biology
IS - 4
ER -