TY - JOUR
T1 - Prolonged STAT1 activation related to the growth arrest of malignant lymphoma cells by interferon-α
AU - Grimley, Philip M.
AU - Fang, Hui
AU - Rui, Hallgeir
AU - Petricoin, Emanuel F.
AU - Ray, Subhransu
AU - Dong, Fan
AU - Fields, Karen H.
AU - Hu, Renqiu
AU - Zoon, Kathryn C.
AU - Audet, Susette
AU - Beeler, Judy
PY - 1998/4/15
Y1 - 1998/4/15
N2 - Multiple biologic effects of interferon-α (IFN-α), including cell growth inhibition and antiviral protection, are initiated by tyrosine phosphorylation of STAT proteins. Although this signal pathway has been intensively investigated, the relevance of STAT signal persistence has received scant attention. Using paired isogenic lymphoma cells (Daudi), which either are sensitive or resistant to growth inhibition by IFN-α, we found comparable initial tyrosine phosphorylation of multiple STAT proteins; however, the phosphorylation durations and associated DNA-binding activities diverged. Phosphorylation and DNA-binding capacity of STAT1 decreased after 4 to 8 hours in resistant cells, as compared with 24 to 32 hours in sensitive cells, whereas phosphorylation of STAT3 and STAT5b was briefer in both lines. Functional significance of the prolonged STAT1 signal, therefore, was explored by experimental interruption of tyrosine phosphorylation, either by premature withdrawal of the IFN-α or deferred addition of pharmacologically diverse antagonists: staurosporine (protein kinase inhibitor), phorbol 12- myristate 13-acetate (growth promoter), or aurintricarboxylic acid (ligand competitor). Results indicated that an approximately 18-hour period of continued STAT1 phosphorylation was associated with growth arrest, but that antiviral protection developed earlier. These differences provide novel evidence of a temporal dimension to IFN-α signal specificity and show that duration of STAT1 activation may be a critical variable in malignant cell responsiveness to antiproliferative therapy.
AB - Multiple biologic effects of interferon-α (IFN-α), including cell growth inhibition and antiviral protection, are initiated by tyrosine phosphorylation of STAT proteins. Although this signal pathway has been intensively investigated, the relevance of STAT signal persistence has received scant attention. Using paired isogenic lymphoma cells (Daudi), which either are sensitive or resistant to growth inhibition by IFN-α, we found comparable initial tyrosine phosphorylation of multiple STAT proteins; however, the phosphorylation durations and associated DNA-binding activities diverged. Phosphorylation and DNA-binding capacity of STAT1 decreased after 4 to 8 hours in resistant cells, as compared with 24 to 32 hours in sensitive cells, whereas phosphorylation of STAT3 and STAT5b was briefer in both lines. Functional significance of the prolonged STAT1 signal, therefore, was explored by experimental interruption of tyrosine phosphorylation, either by premature withdrawal of the IFN-α or deferred addition of pharmacologically diverse antagonists: staurosporine (protein kinase inhibitor), phorbol 12- myristate 13-acetate (growth promoter), or aurintricarboxylic acid (ligand competitor). Results indicated that an approximately 18-hour period of continued STAT1 phosphorylation was associated with growth arrest, but that antiviral protection developed earlier. These differences provide novel evidence of a temporal dimension to IFN-α signal specificity and show that duration of STAT1 activation may be a critical variable in malignant cell responsiveness to antiproliferative therapy.
UR - http://www.scopus.com/inward/record.url?scp=0032523158&partnerID=8YFLogxK
U2 - 10.1182/blood.v91.8.3017.3017_3017_3027
DO - 10.1182/blood.v91.8.3017.3017_3017_3027
M3 - Article
C2 - 9531615
AN - SCOPUS:0032523158
SN - 0006-4971
VL - 91
SP - 3017
EP - 3027
JO - Blood
JF - Blood
IS - 8
ER -