TY - JOUR
T1 - Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score
AU - Canary PASS Investigators
AU - The Profile Study Steering Committee
AU - UKGPCS Collaborators
AU - APCB (Australian Prostate Cancer BioResource)
AU - NC-LA PCaP Investigators
AU - The IMPACT Study Steering Committee and Collaborators
AU - Huynh-Le, Minh Phuong
AU - Karunamuni, Roshan
AU - Fan, Chun Chieh
AU - Asona, Lui
AU - Thompson, Wesley K.
AU - Martinez, Maria Elena
AU - Eeles, Rosalind A.
AU - Kote-Jarai, Zsofia
AU - Muir, Kenneth R.
AU - Lophatananon, Artitaya
AU - Schleutker, Johanna
AU - Pashayan, Nora
AU - Batra, Jyotsna
AU - Grönberg, Henrik
AU - Neal, David E.
AU - Nordestgaard, Børge G.
AU - Tangen, Catherine M.
AU - MacInnis, Robert J.
AU - Wolk, Alicja
AU - Albanes, Demetrius
AU - Haiman, Christopher A.
AU - Travis, Ruth C.
AU - Blot, William J.
AU - Stanford, Janet L.
AU - Mucci, Lorelei A.
AU - West, Catharine M.L.
AU - Nielsen, Sune F.
AU - Kibel, Adam S.
AU - Cussenot, Olivier
AU - Berndt, Sonja I.
AU - Koutros, Stella
AU - Sørensen, Karina Dalsgaard
AU - Cybulski, Cezary
AU - Grindedal, Eli Marie
AU - Menegaux, Florence
AU - Park, Jong Y.
AU - Ingles, Sue A.
AU - Maier, Christiane
AU - Hamilton, Robert J.
AU - Rosenstein, Barry S.
AU - Lu, Yong Jie
AU - Watya, Stephen
AU - Vega, Ana
AU - Kogevinas, Manolis
AU - Wiklund, Fredrik
AU - Penney, Kathryn L.
AU - Huff, Chad D.
AU - Teixeira, Manuel R.
AU - Multigner, Luc
AU - Petrovics, Gyorgy
N1 - Publisher Copyright:
© The Author(s) 2022.
PY - 2022/4
Y1 - 2022/4
N2 - Background: Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets. Methods: In total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry—the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate cancer. The impact of genetic risk stratification on the positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was also measured. Results: The final model (PHS290) had 290 SNPs with non-zero coefficients. Comparing, for example, the highest and lowest quintiles of PHS290, the hazard ratios (HRs) for clinically significant prostate cancer were 13.73 [95% CI: 12.43–15.16] in ProtecT, 7.07 [6.58–7.60] in African ancestry, 10.31 [9.58–11.11] in Asian ancestry, and 11.18 [10.34–12.09] in COSM. Similar results were seen for association with any and fatal prostate cancer. Without PHS stratification, the PPV of PSA testing for clinically significant prostate cancer in ProtecT was 0.12 (0.11–0.14). For the top 20% and top 5% of PHS290, the PPV of PSA testing was 0.19 (0.15–0.22) and 0.26 (0.19–0.33), respectively. Conclusions: We demonstrate better genetic risk stratification for clinically significant prostate cancer than prior versions of PHS in multi-ancestry datasets. This is promising for implementing precision-medicine approaches to prostate cancer screening decisions in diverse populations.
AB - Background: Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets. Methods: In total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry—the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate cancer. The impact of genetic risk stratification on the positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was also measured. Results: The final model (PHS290) had 290 SNPs with non-zero coefficients. Comparing, for example, the highest and lowest quintiles of PHS290, the hazard ratios (HRs) for clinically significant prostate cancer were 13.73 [95% CI: 12.43–15.16] in ProtecT, 7.07 [6.58–7.60] in African ancestry, 10.31 [9.58–11.11] in Asian ancestry, and 11.18 [10.34–12.09] in COSM. Similar results were seen for association with any and fatal prostate cancer. Without PHS stratification, the PPV of PSA testing for clinically significant prostate cancer in ProtecT was 0.12 (0.11–0.14). For the top 20% and top 5% of PHS290, the PPV of PSA testing was 0.19 (0.15–0.22) and 0.26 (0.19–0.33), respectively. Conclusions: We demonstrate better genetic risk stratification for clinically significant prostate cancer than prior versions of PHS in multi-ancestry datasets. This is promising for implementing precision-medicine approaches to prostate cancer screening decisions in diverse populations.
UR - http://www.scopus.com/inward/record.url?scp=85132564858&partnerID=8YFLogxK
U2 - 10.1038/s41391-022-00497-7
DO - 10.1038/s41391-022-00497-7
M3 - Article
C2 - 35152271
AN - SCOPUS:85132564858
SN - 1365-7852
VL - 25
SP - 755
EP - 761
JO - Prostate Cancer and Prostatic Diseases
JF - Prostate Cancer and Prostatic Diseases
IS - 4
ER -