TY - JOUR
T1 - Protein pathway activation mapping reveals molecular networks associated with antiestrogen resistance in breast cancer cell lines
AU - Van Agthoven, Ton
AU - Godinho, Marcia F.E.
AU - Wulfkuhle, Julia D.
AU - Petricoin, Emanuel F.
AU - Dorssers, Lambert C.J.
PY - 2012/11/1
Y1 - 2012/11/1
N2 - Previously, we have identified a panel of breast cancer antiestrogen resistance (BCAR) genes. Several of these genes have clinical relevance because mRNA or protein levels associate with tamoxifen resistance or tumor aggressiveness. We postulated that changes in activation status of protein signaling networks induced by BCAR genes may provide better insight into the mechanisms underlying antiestrogen resistance. Key signal transduction pathways were analyzed for changes in activation or expression using reverse-phase protein microarrays probed with 78 antibodies against signaling proteins with known roles in tumorigenesis. We used ZR-75-1-derived cell lines transduced with AKT1, AKT2, BCAR1, BCAR3, BCAR4, EGFR, GRB7, HRAS, HRAS v12 or HEF1 and MCF7-derived cell lines transduced with BCAR3, BCAR4 or EGFR. In the antiestrogen-resistant cell lines, we observed increased phosphorylation of several pathways involved in cell proliferation and survival. All tamoxifen-resistant cell lines contained high levels of phosphorylated AKT and its biochemically linked substrates Forkhead box O1/3. The activation of ERBB2, ERBB3 and the downstream modulators focal adhesion kinase and SHC were activated in cells with overexpression of BCAR4. Remarkable differences were observed for the levels of activated AMPK alpha1, cyclins, STAT5, STAT6, ERK1/2 and BCL2. The comparison of the cell signaling networks in estrogen-dependent and -independent cell lines revealed biochemically linked kinase-substrate markers that comprised systemically activated signaling pathways involved in tamoxifen resistance. Our results show that this model provides insights into the molecular and cellular mechanisms of breast cancer progression and antiestrogen resistance. This knowledge may help the development of novel targeted treatments.
AB - Previously, we have identified a panel of breast cancer antiestrogen resistance (BCAR) genes. Several of these genes have clinical relevance because mRNA or protein levels associate with tamoxifen resistance or tumor aggressiveness. We postulated that changes in activation status of protein signaling networks induced by BCAR genes may provide better insight into the mechanisms underlying antiestrogen resistance. Key signal transduction pathways were analyzed for changes in activation or expression using reverse-phase protein microarrays probed with 78 antibodies against signaling proteins with known roles in tumorigenesis. We used ZR-75-1-derived cell lines transduced with AKT1, AKT2, BCAR1, BCAR3, BCAR4, EGFR, GRB7, HRAS, HRAS v12 or HEF1 and MCF7-derived cell lines transduced with BCAR3, BCAR4 or EGFR. In the antiestrogen-resistant cell lines, we observed increased phosphorylation of several pathways involved in cell proliferation and survival. All tamoxifen-resistant cell lines contained high levels of phosphorylated AKT and its biochemically linked substrates Forkhead box O1/3. The activation of ERBB2, ERBB3 and the downstream modulators focal adhesion kinase and SHC were activated in cells with overexpression of BCAR4. Remarkable differences were observed for the levels of activated AMPK alpha1, cyclins, STAT5, STAT6, ERK1/2 and BCL2. The comparison of the cell signaling networks in estrogen-dependent and -independent cell lines revealed biochemically linked kinase-substrate markers that comprised systemically activated signaling pathways involved in tamoxifen resistance. Our results show that this model provides insights into the molecular and cellular mechanisms of breast cancer progression and antiestrogen resistance. This knowledge may help the development of novel targeted treatments.
KW - AKT
KW - BCAR1
KW - BCAR3
KW - BCAR4
KW - EGFR
KW - phosphorylation
KW - signaling pathway
KW - tamoxifen resistance
UR - http://www.scopus.com/inward/record.url?scp=84865558963&partnerID=8YFLogxK
U2 - 10.1002/ijc.27489
DO - 10.1002/ijc.27489
M3 - Article
C2 - 22328489
AN - SCOPUS:84865558963
SN - 0020-7136
VL - 131
SP - 1998
EP - 2007
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 9
ER -