Proteomics in human cancer research

Elzbieta Pastwa*, Stella B. Somiari, Malgorzata Czyz, Richard Idem Somiari

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

21 Scopus citations


Proteomics is now widely employed in the study of cancer. Many laboratories are applying the rapidly emerging technologies to elucidate the underlying mechanisms associated with cancer development, progression, and severity in addition to developing drugs and identifying patients who will benefit most from molecular targeted compounds. Various proteomic approaches are now available for protein separation and identification, and for characterization of the function and structure of candidate proteins. In spite of significant challenges that still exist, proteomics has rapidly expanded to include the discovery of novel biomarkers for early detection, diagnosis and prognostication (clinical application), and for the identification of novel drug targets (pharmaceutical application). To achieve these goals, several innovative technologies including 2-D-difference gel electrophoresis, SELDI, multidimensional protein identification technology, isotope-coded affinity tag, solid-state and suspension protein array technologies, X-ray crystallography, NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulation have evolved, and are being used in different combinations. This review provides an overview of the field of proteomics and discusses the key proteomic technologies available to researchers. It also describes some of the important challenges and highlights the current pharmaceutical and clinical applications of proteomics in human cancer research.

Original languageEnglish
Pages (from-to)4-17
Number of pages14
JournalProteomics - Clinical Applications
Issue number1
StatePublished - Jan 2007
Externally publishedYes


  • Cancer
  • Proteome


Dive into the research topics of 'Proteomics in human cancer research'. Together they form a unique fingerprint.

Cite this