TY - JOUR
T1 - Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas
AU - Nepomuceno, Ronald R.
AU - Balatoni, Cynthia E.
AU - Natkunam, Yaso
AU - Snow, Andrew L.
AU - Krams, Sheri M.
AU - Martinez, Olivia M.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - EBV-infected B-cell lymphomas are a potentially life-threatening complication in bone marrow and solid organ transplant recipients. Immunosuppressive drugs required to prevent allograft rejection also impair anti-EBV T-cell immunity, thereby increasing the risk of EBV-associated disease. Here we demonstrate that the immunosuppressant rapamycin (RAPA) has a strong antiproliferative effect in vitro on B-cell lines derived from organ transplant recipients with EBV-associated posttransplant lymphoproliferative disorder (PTLD). Furthermore, RAPA significantly inhibits or delays the growth of solid tumors established from EBV-infected B-cell lines in a xenogeneic mouse model of PTLD. RAPA acts via cell cycle arrest, induction of apoptosis, and, most importantly, inhibition of interleukin 10 secretion, a necessary autocrine growth factor. The reduced interleukin 10 production is accompanied by corresponding decreases in the constitutive activation of the growth-promoting transcription factors signal transducer and activator of transcription 1 and 3. Thus, RAPA can limit B-cell lymphoma growth while simultaneously providing immunosuppression to prevent graft rejection in patients who are otherwise at risk for EBV-associated PTLD. Moreover, these findings may have application to other EBV-associated malignancies.
AB - EBV-infected B-cell lymphomas are a potentially life-threatening complication in bone marrow and solid organ transplant recipients. Immunosuppressive drugs required to prevent allograft rejection also impair anti-EBV T-cell immunity, thereby increasing the risk of EBV-associated disease. Here we demonstrate that the immunosuppressant rapamycin (RAPA) has a strong antiproliferative effect in vitro on B-cell lines derived from organ transplant recipients with EBV-associated posttransplant lymphoproliferative disorder (PTLD). Furthermore, RAPA significantly inhibits or delays the growth of solid tumors established from EBV-infected B-cell lines in a xenogeneic mouse model of PTLD. RAPA acts via cell cycle arrest, induction of apoptosis, and, most importantly, inhibition of interleukin 10 secretion, a necessary autocrine growth factor. The reduced interleukin 10 production is accompanied by corresponding decreases in the constitutive activation of the growth-promoting transcription factors signal transducer and activator of transcription 1 and 3. Thus, RAPA can limit B-cell lymphoma growth while simultaneously providing immunosuppression to prevent graft rejection in patients who are otherwise at risk for EBV-associated PTLD. Moreover, these findings may have application to other EBV-associated malignancies.
UR - http://www.scopus.com/inward/record.url?scp=0042090489&partnerID=8YFLogxK
M3 - Article
C2 - 12907620
AN - SCOPUS:0042090489
SN - 0008-5472
VL - 63
SP - 4472
EP - 4480
JO - Cancer Research
JF - Cancer Research
IS - 15
ER -