TY - JOUR
T1 - Redefining breast cancer subtypes to guide treatment prioritization and maximize response
T2 - Predictive biomarkers across 10 cancer therapies
AU - I-SPY2 Investigators
AU - Wolf, Denise M.
AU - Yau, Christina
AU - Wulfkuhle, Julia
AU - Brown-Swigart, Lamorna
AU - Gallagher, Isela R.
AU - Lee, Pei Rong Evelyn
AU - Zhu, Zelos
AU - Magbanua, Mark J.
AU - Sayaman, Rosalyn
AU - O'Grady, Nicholas
AU - Basu, Amrita
AU - Delson, Amy
AU - Coppé, Jean Philippe
AU - Lu, Ruixiao
AU - Braun, Jerome
AU - Asare, Smita M.
AU - Sit, Laura
AU - Matthews, Jeffrey B.
AU - Perlmutter, Jane
AU - Hylton, Nola
AU - Liu, Minetta C.
AU - Pohlmann, Paula
AU - Symmans, W. Fraser
AU - Rugo, Hope S.
AU - Isaacs, Claudine
AU - DeMichele, Angela M.
AU - Yee, Douglas
AU - Berry, Donald A.
AU - Pusztai, Lajos
AU - Petricoin, Emanuel F.
AU - Hirst, Gillian L.
AU - Esserman, Laura J.
AU - van 't Veer, Laura J.
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/6/13
Y1 - 2022/6/13
N2 - Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.
AB - Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.
KW - DNA repair
KW - Immune
KW - Luminal
KW - breast cancer
KW - clinical trial
KW - immunotherapy
KW - multiple arms
KW - platinum
KW - response prediction
KW - subtyping
UR - http://www.scopus.com/inward/record.url?scp=85131546627&partnerID=8YFLogxK
U2 - 10.1016/j.ccell.2022.05.005
DO - 10.1016/j.ccell.2022.05.005
M3 - Article
C2 - 35623341
AN - SCOPUS:85131546627
SN - 1535-6108
VL - 40
SP - 609-623.e6
JO - Cancer Cell
JF - Cancer Cell
IS - 6
ER -