TY - JOUR
T1 - Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation
AU - Butowicz, Courtney M.
AU - Krupenevich, Rebecca L.
AU - Acasio, Julian C.
AU - Dearth, Christopher L.
AU - Hendershot, Brad D.
N1 - Publisher Copyright:
© 2019
PY - 2020/1
Y1 - 2020/1
N2 - Background: Repeated exposures to larger lateral trunk-pelvic motion and features of knee joint loading likely influence the onset of low back pain and knee osteoarthritis among persons with lower-limb amputation. Decreased hip abductor strength can also influence frontal plane trunk-pelvic motion and knee moments; however, it is unclear how these are inter-related post-amputation. Methods: Twenty-four participants with unilateral lower-limb amputation (14 transtibial; 10 transfemoral) and eight uninjured controls walked at 1.3 m/s while full-body biomechanical data were captured. Multiple linear regression and Cohen's f2 predicted (P < 0.05) the influences of mediolateral trunk and pelvic ranges of motion and angular accelerations, and bilateral isometric hip abductor strength on peak (intact) knee adduction moment and loading rate. Findings: There were no group differences in hip strength, peak knee adduction moment or pelvis acceleration (p > 0.06). The combination of hip strength, and mediolateral trunk and pelvic motion did not predict (F(5,29) = 2.53, p = 0.06, adjusted R2 = 0.27, f2 = 0.08) peak knee adduction moment. However, the combination of hip strength and trunk and pelvis acceleration predicted knee adduction moment loading rate (F(7,29) = 3.59, p = 0.008, adjusted R2 = 0.45, f2 = 0.25), with peak trunk acceleration (β = 0.72, p = 0.008) and intact hip strength (β = 0.78, p = 0.008) significantly contributing to the model. Interpretation: These data suggest increased hip abductor strength counteracts increased lateral trunk acceleration, concomitantly influencing the rate at which the ground reaction force vector loads the intact knee joint. Persons with lower-limb amputation perhaps compensate for increased intact limb loading by increasing trunk motion, thereby increasing demand on hip abductors to attenuate this preferential loading.
AB - Background: Repeated exposures to larger lateral trunk-pelvic motion and features of knee joint loading likely influence the onset of low back pain and knee osteoarthritis among persons with lower-limb amputation. Decreased hip abductor strength can also influence frontal plane trunk-pelvic motion and knee moments; however, it is unclear how these are inter-related post-amputation. Methods: Twenty-four participants with unilateral lower-limb amputation (14 transtibial; 10 transfemoral) and eight uninjured controls walked at 1.3 m/s while full-body biomechanical data were captured. Multiple linear regression and Cohen's f2 predicted (P < 0.05) the influences of mediolateral trunk and pelvic ranges of motion and angular accelerations, and bilateral isometric hip abductor strength on peak (intact) knee adduction moment and loading rate. Findings: There were no group differences in hip strength, peak knee adduction moment or pelvis acceleration (p > 0.06). The combination of hip strength, and mediolateral trunk and pelvic motion did not predict (F(5,29) = 2.53, p = 0.06, adjusted R2 = 0.27, f2 = 0.08) peak knee adduction moment. However, the combination of hip strength and trunk and pelvis acceleration predicted knee adduction moment loading rate (F(7,29) = 3.59, p = 0.008, adjusted R2 = 0.45, f2 = 0.25), with peak trunk acceleration (β = 0.72, p = 0.008) and intact hip strength (β = 0.78, p = 0.008) significantly contributing to the model. Interpretation: These data suggest increased hip abductor strength counteracts increased lateral trunk acceleration, concomitantly influencing the rate at which the ground reaction force vector loads the intact knee joint. Persons with lower-limb amputation perhaps compensate for increased intact limb loading by increasing trunk motion, thereby increasing demand on hip abductors to attenuate this preferential loading.
KW - Biomechanics
KW - Gait analysis
KW - Limb loss
KW - Low back pain
KW - Osteoarthritis
UR - http://www.scopus.com/inward/record.url?scp=85075219869&partnerID=8YFLogxK
U2 - 10.1016/j.clinbiomech.2019.11.009
DO - 10.1016/j.clinbiomech.2019.11.009
M3 - Article
C2 - 31765911
AN - SCOPUS:85075219869
SN - 0268-0033
VL - 71
SP - 160
EP - 166
JO - Clinical Biomechanics
JF - Clinical Biomechanics
ER -