TY - JOUR
T1 - Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01
AU - Otsyula, Nekoye
AU - Angov, Evelina
AU - Bergmann-Leitner, Elke
AU - Koech, Margaret
AU - Khan, Farhat
AU - Bennett, Jason
AU - Otieno, Lucas
AU - Cummings, James
AU - Andagalu, Ben
AU - Tosh, Donna
AU - Waitumbi, John
AU - Richie, Nancy
AU - Shi, Meng
AU - Miller, Lori
AU - Otieno, Walter
AU - Otieno, Godfrey Allan
AU - Ware, Lisa
AU - House, Brent
AU - Godeaux, Olivier
AU - Dubois, Marie Claude
AU - Ogutu, Bernhards
AU - Ballou, W. Ripley
AU - Soisson, Lorraine
AU - Diggs, Carter
AU - Cohen, Joe
AU - Polhemus, Mark
AU - Heppner, D. Gray
AU - Ockenhouse, Christian F.
AU - Spring, Michele D.
N1 - Funding Information:
MCD, OG, JC and WRB are employees of GlaxoSmithKline Biologicals s.a. (GSK). They own shares and options to shares in GSK. In addition JC and WRB are listed as inventors of patented malaria vaccines, but do not hold a patent for a malaria vaccine. Specifically EA and JC are listed as inventors on patent for this MSP142FVO antigen. The Study Sponsor was the Office of the Surgeon General, US Army. This study was funded by the US Agency for International Development (USAID), with partial support from GlaxoSmithKline Biologicals (GSK) and the US Army Medical and Materiel Research Command (USAMRMC). There are no other competing interests.
PY - 2013
Y1 - 2013
N2 - Background: The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP1§ssub§42§esub§ has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods. Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results: In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions: Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations. Clinical Trials NCT00666380.
AB - Background: The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP1§ssub§42§esub§ has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods. Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results: In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions: Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations. Clinical Trials NCT00666380.
KW - Malaria
KW - Merozoite surface protein-1
KW - Plasmodium
KW - Vaccine
UR - http://www.scopus.com/inward/record.url?scp=84872569519&partnerID=8YFLogxK
U2 - 10.1186/1475-2875-12-29
DO - 10.1186/1475-2875-12-29
M3 - Article
C2 - 23342996
AN - SCOPUS:84872569519
SN - 1475-2875
VL - 12
JO - Malaria Journal
JF - Malaria Journal
IS - 1
M1 - 29
ER -