TY - JOUR
T1 - Sensitivity analysis of periprosthetic healing to cell migration, growth factor and post-operative gap using a mechanobiological model
AU - Swider, Pascal
AU - Ambard, D.
AU - Guérin, G.
AU - Søballe, Kjeld
AU - Bechtold, Joan E.
N1 - Funding Information:
The French Minister of Education and Research is acknowledged for its assistance. Related experimental studies were conducted with the support of NIH AR4205, Institute of Pathology at Aarhus University Hospital, Orthopaedic Research and Education Foundation, Danish Research Foundation for Health, Master of a guild, butcher Peter Ryholts Foundation and the Danish Rheumatism Association, and Anna and Jakob Jakobsens Foundation. Biomet donated the PMMA implants.
PY - 2011
Y1 - 2011
N2 - A theoretical rationale, which could help in the investigation of mechanobiological factors affecting periprosthetic tissue healing, is still an open problem. We used a parametric sensitivity analysis to extend a theoretical model based on reactive transport and computational cell biology. The numerical experimentation involved the drill hole, the haptotactic and chemotactic migrations, and the initial concentration of an anabolic growth factor. Output measure was the mineral fraction in tissue surrounding a polymethymethacrylate (PMMA) canine implant (stable loaded implant, non-critical gap). Increasing growth factor concentration increased structural matrix synthesis. A cell adhesion gradient resulted in heterogeneous bone distribution and a growth factor gradient resulted in homogeneous bone distribution in the gap. This could explain the radial variation of bone density fromthe implant surface to the drill hole, indicating less secure fixation. This study helps to understand the relative importance of various host and clinical factors influencing bone distribution and resulting implant fixation.
AB - A theoretical rationale, which could help in the investigation of mechanobiological factors affecting periprosthetic tissue healing, is still an open problem. We used a parametric sensitivity analysis to extend a theoretical model based on reactive transport and computational cell biology. The numerical experimentation involved the drill hole, the haptotactic and chemotactic migrations, and the initial concentration of an anabolic growth factor. Output measure was the mineral fraction in tissue surrounding a polymethymethacrylate (PMMA) canine implant (stable loaded implant, non-critical gap). Increasing growth factor concentration increased structural matrix synthesis. A cell adhesion gradient resulted in heterogeneous bone distribution and a growth factor gradient resulted in homogeneous bone distribution in the gap. This could explain the radial variation of bone density fromthe implant surface to the drill hole, indicating less secure fixation. This study helps to understand the relative importance of various host and clinical factors influencing bone distribution and resulting implant fixation.
KW - Anabolic growth factor
KW - Computational cell biology
KW - Implant fixation
KW - Mechanobiology
KW - Osteoblast
KW - Reactive transport in porous media
UR - http://www.scopus.com/inward/record.url?scp=84855175149&partnerID=8YFLogxK
U2 - 10.1080/10255842.2010.494160
DO - 10.1080/10255842.2010.494160
M3 - Article
C2 - 21082458
AN - SCOPUS:84855175149
SN - 1025-5842
VL - 14
SP - 763
EP - 771
JO - Computer methods in biomechanics and biomedical engineering
JF - Computer methods in biomechanics and biomedical engineering
IS - 9
ER -