TY - JOUR
T1 - SigFuge
T2 - Single gene clustering of RNA-seq reveals differential isoform usage among cancer samples
AU - Kimes, Patrick K.
AU - Cabanski, Christopher R.
AU - Wilkerson, Matthew D.
AU - Zhao, Ni
AU - Johnson, Amy R.
AU - Perou, Charles M.
AU - Makowski, Liza
AU - Maher, Christopher A.
AU - Liu, Yufeng
AU - Marron, J. S.
AU - Hayes, D. Neil
N1 - Funding Information:
National Institutes of Health (NIH) [U24 CA143848 to C.M.P., D.N.H.; U24 CA143848-02S1 to P.K.K., C.R.C., D.N.H.; F32 CA142039 to M.D.W.; F32 H117616 to A.R.J.; R01 CA149569 to Y.L.; R00 CA149182 to C.A.M.]; UNC University Cancer Research Fund [to L.M.]. Funding for open access charge: NIH. Conflict of interest statement. None declared.
PY - 2014/8/18
Y1 - 2014/8/18
N2 - High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A, a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor.
AB - High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A, a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor.
UR - http://www.scopus.com/inward/record.url?scp=84906227150&partnerID=8YFLogxK
U2 - 10.1093/nar/gku521
DO - 10.1093/nar/gku521
M3 - Article
C2 - 25030904
AN - SCOPUS:84906227150
SN - 0305-1048
VL - 42
SP - e113
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 14
ER -