TY - JOUR
T1 - Silica dust exposures during selected construction activities
AU - Flanagan, Maryellen
AU - Seixas, Noah
AU - Majar, Maria
AU - Camp, Janice
AU - Morgan, Michael
N1 - Funding Information:
This work was supported by the National Institute of Occupational Safety and Health under grant no. OHO4039. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or other government agencies.
PY - 2003
Y1 - 2003
N2 - This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m3 (geometric standard deviation [GSD]54.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.
AB - This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m3 (geometric standard deviation [GSD]54.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.
KW - Cleanup
KW - Construction
KW - Demolition
KW - Grinding
KW - Silica exposure
UR - http://www.scopus.com/inward/record.url?scp=0041733132&partnerID=8YFLogxK
U2 - 10.1080/15428110308984823
DO - 10.1080/15428110308984823
M3 - Article
C2 - 12809537
AN - SCOPUS:0041733132
SN - 1542-8117
VL - 64
SP - 319
EP - 328
JO - American Industrial Hygiene Association Journal
JF - American Industrial Hygiene Association Journal
IS - 3
ER -