TY - JOUR
T1 - Small intestinal submucosa
T2 - A substrate for in vitro cell growth
AU - Badylak, Stephen F.
AU - Record, Rae
AU - Lindberg, Kristina
AU - Hodde, Jason
AU - Park, Kinam
PY - 1998/1/1
Y1 - 1998/1/1
N2 - Abstraet-The extracellular matrix (ECM) of the small intestinal submucosa (SIS) was harvested by removing the superficial layers of the mucosa and the external muscular layers. The remaining 80 μm thick sheet was disinfected and sterilized by methods which removed all cellular components. The SIS-ECM, retaining its native 3-dimensional microarchitecture and composition, was evaluated for its ability to support in vitro cell growth. Six separate cell types were seeded either alone or in coculture with other cells upon this matrix, grown in selected media, and examined daily for time periods ranging from 48 h to 2 weeks. The six cell types tested were NIH Swiss mouse 3T3 fibroblasts, NIH 3T3/J2 fibroblasts, primary human fibroblasts, primary human keratinocytes, human microvascular endothelial cells (HMECs), and an established rat osteosarcoma (ROS) cell line. All cell types showed the ability to attach and proliferate. All fibroblast cell lines and the keratinocytes proliferated and/or migrated into the 3-dimensional scaffold of the SIS matrix. The ROS cells and the HMECs were confined in their growth pattern to the surface of the matrix. Coculturing of NIH 3T3/J2 fibroblasts and primary human keratinocytes resulted in a distinctive spatial orientation of the two cell types. The fibroblasts populated the mid-substance of the 3-dimensional matrix and the keratinocytes formed an epidermal structure with rete ridge-like formation and stratification when the composite was lifted to an air liquid interface in culture. In summary, SIS provides a substratum with a 3-dimensional scaffold that allows for cell migration and spatial organization. This substratum is suitable for in vitro studies of the interaction between epithelial or mesenchymal cells and a naturally occurring extracellular matrix.
AB - Abstraet-The extracellular matrix (ECM) of the small intestinal submucosa (SIS) was harvested by removing the superficial layers of the mucosa and the external muscular layers. The remaining 80 μm thick sheet was disinfected and sterilized by methods which removed all cellular components. The SIS-ECM, retaining its native 3-dimensional microarchitecture and composition, was evaluated for its ability to support in vitro cell growth. Six separate cell types were seeded either alone or in coculture with other cells upon this matrix, grown in selected media, and examined daily for time periods ranging from 48 h to 2 weeks. The six cell types tested were NIH Swiss mouse 3T3 fibroblasts, NIH 3T3/J2 fibroblasts, primary human fibroblasts, primary human keratinocytes, human microvascular endothelial cells (HMECs), and an established rat osteosarcoma (ROS) cell line. All cell types showed the ability to attach and proliferate. All fibroblast cell lines and the keratinocytes proliferated and/or migrated into the 3-dimensional scaffold of the SIS matrix. The ROS cells and the HMECs were confined in their growth pattern to the surface of the matrix. Coculturing of NIH 3T3/J2 fibroblasts and primary human keratinocytes resulted in a distinctive spatial orientation of the two cell types. The fibroblasts populated the mid-substance of the 3-dimensional matrix and the keratinocytes formed an epidermal structure with rete ridge-like formation and stratification when the composite was lifted to an air liquid interface in culture. In summary, SIS provides a substratum with a 3-dimensional scaffold that allows for cell migration and spatial organization. This substratum is suitable for in vitro studies of the interaction between epithelial or mesenchymal cells and a naturally occurring extracellular matrix.
KW - Cell culture
KW - Cell growth substrate
KW - Extracellular matrix
KW - In vitro cell growth
KW - Small intestinal submucosa
KW - Substratum
UR - http://www.scopus.com/inward/record.url?scp=0031666574&partnerID=8YFLogxK
U2 - 10.1163/156856298X00208
DO - 10.1163/156856298X00208
M3 - Article
C2 - 9724899
AN - SCOPUS:0031666574
SN - 0920-5063
VL - 9
SP - 863
EP - 878
JO - Journal of Biomaterials Science, Polymer Edition
JF - Journal of Biomaterials Science, Polymer Edition
IS - 8
ER -