Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading

Mark C.P. Haigney, Edward G. Lakatta, Michael D. Stern, Howard S. Silverman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

183 Scopus citations

Abstract

Background: Studies have shown that the rise in intracellular ionized calcium, [Ca2+]i, in hypoxic myocardium is driven by an increase in sodium, [Na+]i, but the source of Na+ is not known. Methods and Results: Inhibitors of the voltage-gated Na+ channel were used to investigate the effect of Na+ channel blockade on hypoxic Na+ loading, Na+-dependent Ca2+ loading, and reoxygenation hypercontracture in isolated adult rat cardiac myocytes. Single electrically stimulated (0.2 Hz) cells were loaded with either SBFI (to index [Na+],) or indo-1 (to index [Ca2+]i) and exposed to glucose-free hypoxia (Po2 <0.02 mm Hg). Both [Na+]; and [Ca2+]i increased during hypoxia when cells became inexcitable following ATP-depletion contracture. The hypoxic rise in [Na+]; and [Ca2+]i was significantly attenuated by 1 μmol/L R 56865. Tetrodotoxin (60 μmol/L), a selective Na+-channel blocker, also markedly reduced the rise in [Ca2+]; during hypoxia and reoxygenation. Reoxygenation-induced cellular hypercontracture was reduced from 83% (45 of 54 cells) under control conditions to 12% (4 of 32) in the presence of R 56865 (P<.05). Lidocaine reduced hypercontracture dose dependently with 13% of cells hypercontracting in 100 μmol/L lidocaine, 42% in 50 μmol/L lidocaine, and 93% in 25 μmol/L lidocaine. The Na+-H+ exchange blocker, ethylisopropylamiloride (10 μmol/L) was also effective, limiting hypercontracture to 12%. R 56865, lidocaine, and ethylisopropylamiloride were also effective in preventing hypercontracture in normoxic myocytes induced by 75 μmol/L veratridine, an agent that impairs Na+ channel inactivation. Ethylisopropylamiloride prevented the veratridine-induced rise in [Ca2+]i without affecting Na+-Ca2+ exchange, suggesting that amiloride derivatives can reduce Ca2+ loading by blocking Na+ entry through Na+ channels, an action that may in part underlie their ability to prevent hypoxic Na+ and Ca2+ loading. Conclusions: Na+ influx through the voltage-gated Na+ channel is an important route of hypoxic Na+ loading, Na+-dependent Ca2+ loading, and reoxygenation hypercontracture in isolated rat cardiac myocytes. Importantly, the Na+ channel appears to serve as a route for hypoxic Na+ influx after myocytes become inexcitable.

Original languageEnglish
Pages (from-to)391-399
Number of pages9
JournalCirculation
Volume90
Issue number1
StatePublished - Jul 1994

Keywords

  • Calcium
  • Channels
  • Hypoxia
  • Ischemia
  • Sodium

Fingerprint

Dive into the research topics of 'Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading'. Together they form a unique fingerprint.

Cite this