Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modeling of the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA

Mohamed F Sallam, Sarah R Michaels, Claudia Riegel, Roberto M Pereira, Wayne Zipperer, B Graeme Lockaby, Philip G Koehler

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus, within their flight range . Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling localities of gravid female Culex quinquefasciatus. The spatio-temporal correlations between VHC data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we developed a distribution model using the correlated predicting variables. Only 12 factors showed significant correlations with spatial distribution of VHC ratios ( R² = 81.62, p < 0.01). Non-forested wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest relationship. The VHC ratios showed monthly environmental resilience in terms of number and type of influential factors. The highest prediction power of RU and other urban and built up land (OUBL), was demonstrated during May-August. This association was positively correlated with the onset of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife analysis in MaxEnt and independently collected field validation points. The spatial and temporal correlations of VHC ratios and their response to the predicting variables are discussed.

Original languageEnglish
JournalInternational Journal of Environmental Research and Public Health
Volume14
Issue number8
DOIs
StatePublished - 8 Aug 2017

Keywords

  • Animals
  • Culex/physiology
  • Ecosystem
  • Female
  • Humans
  • Linear Models
  • Mosquito Vectors/virology
  • New Orleans/epidemiology
  • West Nile Fever/epidemiology
  • West Nile virus

Fingerprint

Dive into the research topics of 'Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modeling of the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA'. Together they form a unique fingerprint.

Cite this