TY - JOUR
T1 - State-of-the-Art Review
T2 - Sex Hormone Therapy in Trauma-Hemorrhage
AU - Lang, Eric
AU - Abdou, Hossam
AU - Edwards, Joseph
AU - Patel, Neerav
AU - Morrison, Jonathan J.
N1 - Publisher Copyright:
© 2022 Lippincott Williams and Wilkins. All rights reserved.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Trauma-hemorrhage is the leading cause of prehospital and early in-hospital deaths, while also significantly contributing to the later development of multisystem organ dysfunction/failure and sepsis. Common and advanced resuscitative methods would potentially demonstrate benefits in the prehospital setting; however, they face a variety of barriers to application and implementation. Thus, a dialogue around a novel adjunct has arisen, sex hormone therapy. Proposed candidates include estradiol and its derivatives, metoclopramide hydrochloride/prolactin, dehydroepiandrosterone, and flutamide; with each having demonstrated a range of salutary effects in several animal model studies. Several retrospective analyses have observed a gender-based dimorphism in mortality following trauma-hemorrhage, thus suggesting that estrogens contribute to this pattern. Trauma-hemorrhage animal models have shown estrogens offer protective effects to the cardiovascular, pulmonary, hepatic, gastrointestinal, and immune systems. Additionally, a series of survival studies utilizing 17α-ethinylestradiol-3-sulfate, a potent, water-soluble synthetic estrogen, have demonstrated a significant survival benefit and beneficial effects on cardiovascular function. This review presents the findings of retrospective clinical studies, preclinical animal studies, and discusses how and why 17α-ethinylestradiol-3-sulfate should be considered for investigation within a prospective clinical trial.
AB - Trauma-hemorrhage is the leading cause of prehospital and early in-hospital deaths, while also significantly contributing to the later development of multisystem organ dysfunction/failure and sepsis. Common and advanced resuscitative methods would potentially demonstrate benefits in the prehospital setting; however, they face a variety of barriers to application and implementation. Thus, a dialogue around a novel adjunct has arisen, sex hormone therapy. Proposed candidates include estradiol and its derivatives, metoclopramide hydrochloride/prolactin, dehydroepiandrosterone, and flutamide; with each having demonstrated a range of salutary effects in several animal model studies. Several retrospective analyses have observed a gender-based dimorphism in mortality following trauma-hemorrhage, thus suggesting that estrogens contribute to this pattern. Trauma-hemorrhage animal models have shown estrogens offer protective effects to the cardiovascular, pulmonary, hepatic, gastrointestinal, and immune systems. Additionally, a series of survival studies utilizing 17α-ethinylestradiol-3-sulfate, a potent, water-soluble synthetic estrogen, have demonstrated a significant survival benefit and beneficial effects on cardiovascular function. This review presents the findings of retrospective clinical studies, preclinical animal studies, and discusses how and why 17α-ethinylestradiol-3-sulfate should be considered for investigation within a prospective clinical trial.
KW - Estradiol
KW - estrogen
KW - hemorrhage
KW - poly trauma
KW - sex hormone
KW - survival
UR - http://www.scopus.com/inward/record.url?scp=85125552812&partnerID=8YFLogxK
U2 - 10.1097/SHK.0000000000001871
DO - 10.1097/SHK.0000000000001871
M3 - Review article
C2 - 34618728
AN - SCOPUS:85125552812
SN - 1073-2322
VL - 57
SP - 317
EP - 326
JO - Shock
JF - Shock
IS - 3
ER -