TY - JOUR
T1 - Surgical Treatment of Focal Chondral Lesions of the Knee in the Military Population
T2 - Current and Future Therapies
AU - Tropf, Jordan G.
AU - Dickens, Jonathan F.
AU - LeClere, Lance E.
N1 - Publisher Copyright:
© 2024 Oxford University Press. All rights reserved.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Introduction: Chondral and osteochondral defects of the knee are common injuries in the military population that have a significant impact on readiness. Definitive treatment of these injuries is challenging since cartilage has a limited capacity for self-repair and regeneration. Management is particularly challenging in military patients who maintain a higher level of activity similar to athletes. Existing surgical techniques have variable results and often long recovery times, sparking the development of several new innovative technologies to return service members back to duty more quickly and effectively after cartilage injury. The purpose of this article is to review the current and future surgical treatments for chondral and osteochondral knee lesions and their relevance in managing these injuries in the military. Methods: In this review article, we describe the current treatments for chondral and osteochondral defects of the knee, reporting on outcomes in military populations. We explore emerging treatment modalities for cartilage defects, reporting innovations, stage of research, and current data. Published results of each treatment option in military populations are reviewed throughout the article. Results: This review includes 12 treatments for chondral lesions. Of these therapies, four are considered synthetic and the remaining are considered regenerative solutions. Regenerative therapies tend to perform better in younger, healthier populations with robust healing capacity. Success of treatment depends on lesions and patient characteristics. Nearly all modalities currently available in the USA were successful in improving patients from presurgical function in the short (<6 months) term, but the long-term efficacy is still challenged. Upcoming technologies show promising results in clinical and animal studies that may provide alternative options desirable for the military population. Conclusions: The current treatment options for cartilage lesions are not entirely satisfactory, usually with long recovery times and mixed results. An ideal therapy would be a single procedure that possesses the ability to enable a quick return to activity and duty, alleviate pain, provide long-term durability, and disrupt the progression of osteoarthritis. Evolving technologies for cartilage lesions are expanding beyond currently available techniques that may revolutionize the future of cartilage repair.
AB - Introduction: Chondral and osteochondral defects of the knee are common injuries in the military population that have a significant impact on readiness. Definitive treatment of these injuries is challenging since cartilage has a limited capacity for self-repair and regeneration. Management is particularly challenging in military patients who maintain a higher level of activity similar to athletes. Existing surgical techniques have variable results and often long recovery times, sparking the development of several new innovative technologies to return service members back to duty more quickly and effectively after cartilage injury. The purpose of this article is to review the current and future surgical treatments for chondral and osteochondral knee lesions and their relevance in managing these injuries in the military. Methods: In this review article, we describe the current treatments for chondral and osteochondral defects of the knee, reporting on outcomes in military populations. We explore emerging treatment modalities for cartilage defects, reporting innovations, stage of research, and current data. Published results of each treatment option in military populations are reviewed throughout the article. Results: This review includes 12 treatments for chondral lesions. Of these therapies, four are considered synthetic and the remaining are considered regenerative solutions. Regenerative therapies tend to perform better in younger, healthier populations with robust healing capacity. Success of treatment depends on lesions and patient characteristics. Nearly all modalities currently available in the USA were successful in improving patients from presurgical function in the short (<6 months) term, but the long-term efficacy is still challenged. Upcoming technologies show promising results in clinical and animal studies that may provide alternative options desirable for the military population. Conclusions: The current treatment options for cartilage lesions are not entirely satisfactory, usually with long recovery times and mixed results. An ideal therapy would be a single procedure that possesses the ability to enable a quick return to activity and duty, alleviate pain, provide long-term durability, and disrupt the progression of osteoarthritis. Evolving technologies for cartilage lesions are expanding beyond currently available techniques that may revolutionize the future of cartilage repair.
UR - http://www.scopus.com/inward/record.url?scp=85186431465&partnerID=8YFLogxK
U2 - 10.1093/milmed/usad250
DO - 10.1093/milmed/usad250
M3 - Article
C2 - 37428507
AN - SCOPUS:85186431465
SN - 0026-4075
VL - 189
SP - E541-E550
JO - Military Medicine
JF - Military Medicine
IS - 3-4
ER -