TY - JOUR
T1 - Synaptic deprivation and age-related vulnerability to hypoxic-ischemic neuronal injury
T2 - A hypothesis
AU - Marini, Ann M.
AU - Choi, John
AU - Labutta, Robert
PY - 2001
Y1 - 2001
N2 - Advanced age is associated with physiological changes, such as cerebral autoregulation dysfunction, atrial fibrillation, reduced cerebral blood flow, elevated blood pressure, and other changes. Stroke-related dementia is associated with brain loss principally due to strokes, and neuropathological examination of the brains of old people shows a direct correlation between the extent of brain loss and dementia. However, the exact mechanism of the age related vulnerability to hypoxic-ischemic neuronal injury remains unknown. The majority of synapses in the brain use excitatory amino acids as their neurotransmitter. Glutamate, a major endogenous excitatory amino acid required for normal physiological excitation, is also involved in the pathophysiology of hypoxicischemic neuronal injury. The N-methyl-D-aspartate (NMDA) glutamate receptor subtype plays a major role in mediating hypoxic-ischemic neuronal injury. NMDA receptors also mediate adaptive responses important for synaptic plasticity. This report explores the possible role of synaptic activity as a protective mechanism against neuronal cell death. Specifically, the role of NMDA receptors in neuronal plasticity by upregulating a survival pathway is discussed. Loss of a neuronal population that uses glutamate as its neurotransmitter leads to a loss of activity on the postsynaptic neurons or synaptic deprivation. Deprivation of excitatory amino acids on the postsynaptic neurons results in the failure of activity-dependent induced intrinsic survival pathways induced by NMDA receptors. The loss of neuroprotective intrinsic survival pathways increases the vulnerability of these neurons to more hypoxic-ischemic neuronal damage. Since cerebral infarction is also age related, this hypothesis provides a plausible explanation of how we become more vulnerable to hypoxic-ischemic neuronal injury as a function of age.
AB - Advanced age is associated with physiological changes, such as cerebral autoregulation dysfunction, atrial fibrillation, reduced cerebral blood flow, elevated blood pressure, and other changes. Stroke-related dementia is associated with brain loss principally due to strokes, and neuropathological examination of the brains of old people shows a direct correlation between the extent of brain loss and dementia. However, the exact mechanism of the age related vulnerability to hypoxic-ischemic neuronal injury remains unknown. The majority of synapses in the brain use excitatory amino acids as their neurotransmitter. Glutamate, a major endogenous excitatory amino acid required for normal physiological excitation, is also involved in the pathophysiology of hypoxicischemic neuronal injury. The N-methyl-D-aspartate (NMDA) glutamate receptor subtype plays a major role in mediating hypoxic-ischemic neuronal injury. NMDA receptors also mediate adaptive responses important for synaptic plasticity. This report explores the possible role of synaptic activity as a protective mechanism against neuronal cell death. Specifically, the role of NMDA receptors in neuronal plasticity by upregulating a survival pathway is discussed. Loss of a neuronal population that uses glutamate as its neurotransmitter leads to a loss of activity on the postsynaptic neurons or synaptic deprivation. Deprivation of excitatory amino acids on the postsynaptic neurons results in the failure of activity-dependent induced intrinsic survival pathways induced by NMDA receptors. The loss of neuroprotective intrinsic survival pathways increases the vulnerability of these neurons to more hypoxic-ischemic neuronal damage. Since cerebral infarction is also age related, this hypothesis provides a plausible explanation of how we become more vulnerable to hypoxic-ischemic neuronal injury as a function of age.
KW - Age related vulnerability
KW - Excitatory amino acids
KW - Hypoxic-ischemic neuronal injury
KW - Intrinsic survival pathways
KW - NMDA receptors
KW - Plasticity
KW - Synaptic deprivation
UR - http://www.scopus.com/inward/record.url?scp=0034944621&partnerID=8YFLogxK
U2 - 10.1111/j.1749-6632.2001.tb03631.x
DO - 10.1111/j.1749-6632.2001.tb03631.x
M3 - Article
C2 - 11462776
AN - SCOPUS:0034944621
SN - 0077-8923
VL - 939
SP - 238
EP - 253
JO - Annals of the New York Academy of Sciences
JF - Annals of the New York Academy of Sciences
ER -