TY - JOUR
T1 - Synergism of human amnion-derived multipotent progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery
T2 - Pre-clinical studies in an experimental model of penetrating ballistic-like brain injury
AU - Chen, Zhiyong
AU - Lu, X. C.May
AU - Shear, Deborah A.
AU - Dave, Jitendra R.
AU - Davis, Angela R.
AU - Evangelista, Clifford A.
AU - Duffy, Danelle
AU - Tortella, Frank C.
N1 - Funding Information:
Funding for this project was provided by DOD CDMRP Grant W81XWH-08-2-0127 . The material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors, and are not to be construed as official, or as reflecting true views of the Department of the Army or Department of Defense. The authors have no conflict of interest.
PY - 2011/1/12
Y1 - 2011/1/12
N2 - One of the histopathological consequences of a penetrating ballistic brain injury is the formation of a permanent cavity. In a previous study using the penetrating ballistic-like brain injury (PBBI) model, engrafted human amnion-derived multipotent progenitor (AMP) cells failed to survive when injected directly in the injury tract, suggesting that the cell survival requires a supportive matrix. In this study, we seated AMP cells in a collagen-based scaffold, injected into the injury core, and investigated cell survival and neuroprotection following PBBI. AMP cells suspended in AMP cell conditioned medium (ACCS) or in a liquefied collagen matrix were injected immediately after a PBBI along the penetrating injury tract. Injured control rats received only liquefied collagen matrix. All animals were allowed to survive two weeks. Consistent with our previous results, AMP cells suspended in ACCS failed to survive; likewise, no collagen was identified at the injury site when injected alone. In contrast, both AMP cells and the collagen were preserved in the injury cavity when injected together. In addition, AMP cells/collagen treatment preserved some apparent brain tissue in the injury cavity, and there was measurable infiltration of endogenous neural progenitor cells and astrocytes into the preserved brain tissue. AMP cells were also found to have migrated into the subventricular zone and the corpus callosum. Moreover, the AMP cell/collagen treatment significantly attenuated the PBBI-induced axonal degeneration in the corpus callosum and ipsilateral thalamus and improved motor impairment on rotarod performance. Overall, collagen-based scaffold provided a supportive matrix for AMP cell survival, migration, and neuroprotection.
AB - One of the histopathological consequences of a penetrating ballistic brain injury is the formation of a permanent cavity. In a previous study using the penetrating ballistic-like brain injury (PBBI) model, engrafted human amnion-derived multipotent progenitor (AMP) cells failed to survive when injected directly in the injury tract, suggesting that the cell survival requires a supportive matrix. In this study, we seated AMP cells in a collagen-based scaffold, injected into the injury core, and investigated cell survival and neuroprotection following PBBI. AMP cells suspended in AMP cell conditioned medium (ACCS) or in a liquefied collagen matrix were injected immediately after a PBBI along the penetrating injury tract. Injured control rats received only liquefied collagen matrix. All animals were allowed to survive two weeks. Consistent with our previous results, AMP cells suspended in ACCS failed to survive; likewise, no collagen was identified at the injury site when injected alone. In contrast, both AMP cells and the collagen were preserved in the injury cavity when injected together. In addition, AMP cells/collagen treatment preserved some apparent brain tissue in the injury cavity, and there was measurable infiltration of endogenous neural progenitor cells and astrocytes into the preserved brain tissue. AMP cells were also found to have migrated into the subventricular zone and the corpus callosum. Moreover, the AMP cell/collagen treatment significantly attenuated the PBBI-induced axonal degeneration in the corpus callosum and ipsilateral thalamus and improved motor impairment on rotarod performance. Overall, collagen-based scaffold provided a supportive matrix for AMP cell survival, migration, and neuroprotection.
KW - Axon degeneration
KW - Collagen scaffold
KW - Human amnion
KW - Penetrating ballistic-like brain injury
KW - Progenitor cells
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=78651063953&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2010.10.028
DO - 10.1016/j.brainres.2010.10.028
M3 - Article
C2 - 20951684
AN - SCOPUS:78651063953
SN - 0006-8993
VL - 1368
SP - 71
EP - 81
JO - Brain Research
JF - Brain Research
ER -