Abstract
Hemorrhagic shock due to trauma (HS/T) induces an inflammatory response that can contribute to end-organ injury. The pathways involved in the initiation and propagation of HS/T-induced inflammation are incompletely understood. Here, we hypothesized that the DNA sensor TLR9 would have a role in inflammatory signaling after HS/T. Using mice expressing a nonfunctional, mutant form of TLR9, we identified a role of TLR9 in driving the initial cytokine response and liver damage in a model of hemorrhagic shock and bilateral femur fracture. Circulating DNA levels were found to correlate with the degree of tissue damage. Experiments using chimeric mice show that TLR9 on both bone marrow-derived cells and parenchymal cells are important for the TLR9-mediated liver and tissue damage, as well as systemic inflammation after HS/T. These data suggest that release of DNA may be a driver of the inflammatory response to severe injury as well as a marker of the extent of tissue damage. One of the sensors of DNA in the setting of HS/T seems to be TLR9.
Original language | English |
---|---|
Pages (from-to) | 164-170 |
Number of pages | 7 |
Journal | Shock |
Volume | 35 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2011 |
Externally published | Yes |
Keywords
- TLR9
- chimera
- damage-associated molecular pattern
- femur fracture
- hemorrhagic shock
- trauma