TY - JOUR
T1 - The autonomic effects of cardiopulmonary decompression sickness in swine using principal dynamic mode analysis
AU - Bai, Yan
AU - Selvaraj, Nandakumar
AU - Petersen, Kyle
AU - Mahon, Richard
AU - Cronin, William A.
AU - White, Joseph
AU - Brink, Peter R.
AU - Chon, Ki H.
PY - 2013/10/1
Y1 - 2013/10/1
N2 - Methods to predict onset of cardiopulmonary (CP) decompression sickness (DCS) would be of great benefit to clinicians caring for stricken divers. Principal dynamic mode (PDM) analysis of the electrocardiogram has been shown to provide accurate separation of the sympathetic and parasympathetic tone dynamics. Nine swine (Sus scrofa) underwent a 15-h saturation dive at 184 kPa (60 ft. of saltwater) in a hyperbaric chamber followed by dropout decompression, whereas six swine, used as a control, underwent a 15-h saturation dive at 15 kPa (5 ft. of saltwater). Noninvasive electrocardiograms were recorded throughout the experiment and autonomic nervous system dynamics were evaluated by heart rate series analysis using power spectral density (PSD) and PDM methods. We observed a significant increase in the sympathetic and parasympathetic tones using the PDM method on average 20 min before DCS onset following a sudden induction of decompression. Parasympathetic activities remained elevated, but the sympathetic modulation was significantly reduced at onset of cutis and CP DCS signs, as reported by a trained observer. Similar nonsignificant observations occurred during PSD analysis. PDM observations contrast with previous work showing that neurological DCS resulted in a >50% reduction in both sympathetic and parasympathetic tone. Therefore, tracking dynamics of the parasympathetic tones via the PDM method may allow discrimination between CP DCS and neurological DCS, and this significant increase in parasympathetic tone has potential use as a marker for early diagnosis of CP DCS.
AB - Methods to predict onset of cardiopulmonary (CP) decompression sickness (DCS) would be of great benefit to clinicians caring for stricken divers. Principal dynamic mode (PDM) analysis of the electrocardiogram has been shown to provide accurate separation of the sympathetic and parasympathetic tone dynamics. Nine swine (Sus scrofa) underwent a 15-h saturation dive at 184 kPa (60 ft. of saltwater) in a hyperbaric chamber followed by dropout decompression, whereas six swine, used as a control, underwent a 15-h saturation dive at 15 kPa (5 ft. of saltwater). Noninvasive electrocardiograms were recorded throughout the experiment and autonomic nervous system dynamics were evaluated by heart rate series analysis using power spectral density (PSD) and PDM methods. We observed a significant increase in the sympathetic and parasympathetic tones using the PDM method on average 20 min before DCS onset following a sudden induction of decompression. Parasympathetic activities remained elevated, but the sympathetic modulation was significantly reduced at onset of cutis and CP DCS signs, as reported by a trained observer. Similar nonsignificant observations occurred during PSD analysis. PDM observations contrast with previous work showing that neurological DCS resulted in a >50% reduction in both sympathetic and parasympathetic tone. Therefore, tracking dynamics of the parasympathetic tones via the PDM method may allow discrimination between CP DCS and neurological DCS, and this significant increase in parasympathetic tone has potential use as a marker for early diagnosis of CP DCS.
KW - Autonomic nervous system
KW - Cutis marmorata
KW - Heart rate variability
KW - Parasympathetic
KW - Sympathetic
UR - http://www.scopus.com/inward/record.url?scp=84884940196&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00150.2012
DO - 10.1152/ajpregu.00150.2012
M3 - Article
C2 - 23883677
AN - SCOPUS:84884940196
SN - 0363-6119
VL - 305
SP - R748-R758
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 7
ER -