The role of natural killer (NK) cells and nk cell receptor polymorphisms in the assessment of HIV-1 neutralization

Bruce K. Brown, Lindsay Wieczorek, Gustavo Kijak, Kara Lombardi, Jeffrey Currier, Maggie Wesberry, John C. Kappes, Viseth Ngauy, Mary Marovich, Nelson Michael, Christina Ochsenbauer, David C. Montefiori, Victoria R. Polonis

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.

Original languageEnglish
Article numbere29454
JournalPLoS ONE
Volume7
Issue number4
DOIs
StatePublished - 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'The role of natural killer (NK) cells and nk cell receptor polymorphisms in the assessment of HIV-1 neutralization'. Together they form a unique fingerprint.

Cite this