TY - JOUR
T1 - TLR4 inactivation in myeloid cells accelerates bone healing of a calvarial defect model in mice
AU - Wang, Dan
AU - Gilbert, James R.
AU - Taylor, Gwen M.
AU - Sodhi, Chhinder P.
AU - Hackam, David J.
AU - Losee, Joseph E.
AU - Billiar, Timothy R.
AU - Cooper, Gregory M.
N1 - Publisher Copyright:
© 2017 by the American Society of Plastic Surgeons.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Background: Toll-like receptor 4 (TLR4) has been implicated in inflammation-induced bone destruction in various chronic bone diseases; however, its direct influence on bone healing is not well understood. The authors' previous study showed accelerated bone healing with higher osteoclastogenesis gene expression in toll-like receptor 4 knockout mice (TLR4-/-). This study aimed to further elucidate the underlying cellular mechanisms during fracture healing by generating a myeloid cell-specific toll-like receptor 4 knockout model (Lyz-TLR4-/- mice). Methods: Calvarial defects, 1.8 mm in diameter, were created in wild-type, TLR4-/-, and Lyz-TLR4-/- mice. Bone healing was investigated using micro-computed tomography and histologic, histomorphometric, and immunohistochemistry analyses. Primary bone marrow-derived cells were also isolated from wild-type, TLR4-/-, and Lyz-TLR4-/- mice to measure their osteoclast differentiation and resorption properties. Results: A similar faster bone healing response, with active intramembranous bone formation, intense osteopontin staining, and more osteoblast infiltration, was observed in TLR4-/- and Lyz-TLR4-/- mice. Tartrate-resistant acid phosphatase staining showed more osteoclast infiltration in Lyz-TLR4-/- mice than in wild-type mice at day 7. Primary bone marrow-derived cells isolated from TLR4-/- and Lyz-TLR4-/- mice presented enhanced osteoclastogenesis and resorption activity compared with those from wild-type mice. Comparable M0, M1, and M2 macrophage infiltration was found among all groups at days 1, 4, and 7. Conclusions: This study revealed that inactivation of toll-like receptor 4 in myeloid cells enhanced osteoclastogenesis and accelerated healing response during skull repair. Together with the role of toll-like receptor 4 in inflammation-mediated bone destruction, it suggests that toll-like receptor 4 might regulate inflammation-induced osteoclastogenesis under different clinical settings.
AB - Background: Toll-like receptor 4 (TLR4) has been implicated in inflammation-induced bone destruction in various chronic bone diseases; however, its direct influence on bone healing is not well understood. The authors' previous study showed accelerated bone healing with higher osteoclastogenesis gene expression in toll-like receptor 4 knockout mice (TLR4-/-). This study aimed to further elucidate the underlying cellular mechanisms during fracture healing by generating a myeloid cell-specific toll-like receptor 4 knockout model (Lyz-TLR4-/- mice). Methods: Calvarial defects, 1.8 mm in diameter, were created in wild-type, TLR4-/-, and Lyz-TLR4-/- mice. Bone healing was investigated using micro-computed tomography and histologic, histomorphometric, and immunohistochemistry analyses. Primary bone marrow-derived cells were also isolated from wild-type, TLR4-/-, and Lyz-TLR4-/- mice to measure their osteoclast differentiation and resorption properties. Results: A similar faster bone healing response, with active intramembranous bone formation, intense osteopontin staining, and more osteoblast infiltration, was observed in TLR4-/- and Lyz-TLR4-/- mice. Tartrate-resistant acid phosphatase staining showed more osteoclast infiltration in Lyz-TLR4-/- mice than in wild-type mice at day 7. Primary bone marrow-derived cells isolated from TLR4-/- and Lyz-TLR4-/- mice presented enhanced osteoclastogenesis and resorption activity compared with those from wild-type mice. Comparable M0, M1, and M2 macrophage infiltration was found among all groups at days 1, 4, and 7. Conclusions: This study revealed that inactivation of toll-like receptor 4 in myeloid cells enhanced osteoclastogenesis and accelerated healing response during skull repair. Together with the role of toll-like receptor 4 in inflammation-mediated bone destruction, it suggests that toll-like receptor 4 might regulate inflammation-induced osteoclastogenesis under different clinical settings.
UR - http://www.scopus.com/inward/record.url?scp=85026294033&partnerID=8YFLogxK
U2 - 10.1097/PRS.0000000000003541
DO - 10.1097/PRS.0000000000003541
M3 - Article
C2 - 28746278
AN - SCOPUS:85026294033
SN - 0032-1052
VL - 140
SP - 296e-306e
JO - Plastic and Reconstructive Surgery
JF - Plastic and Reconstructive Surgery
IS - 2
ER -