TY - JOUR
T1 - Tourniquet-induced ischemia creates increased risk of organ dysfunction and mortality following delayed limb amputation
AU - Rowe, Cassie J
AU - Walsh, Sarah A
AU - Dragon, Andrea H
AU - Rhodes, Alisha M
AU - Pak, Olivia L
AU - Ronzier, Elsa
AU - Levi, Benjamin
AU - Potter, Benjamin K
AU - Spreadborough, Philip J
AU - Davis, Thomas A
N1 - Funding Information:
This work was supported by the Department of Defense Congressionally Directed Medical Research Programs (CDMRP) and Peer-Reviewed Orthopaedic Research Program (PRORP; grant award W81XWH1920032).
Publisher Copyright:
© 2023
PY - 2023/6
Y1 - 2023/6
N2 - Tourniquets are critical for the control of traumatic extremity hemorrhage. In this study, we sought to determine, in a rodent blast-related extremity amputation model, the impact of prolonged tourniquet application and delayed limb amputation on survival, systemic inflammation, and remote end organ injury. Adult male Sprague Dawley rats were subjected to blast overpressure (120±7 kPa) and orthopedic extremity injury consisting femur fracture, one-minute soft tissue crush injury (20 psi), ± 180 min of tourniquet-induced hindlimb ischemia followed by delayed (60 min of reperfusion) hindlimb amputation (dHLA). All animals in the non-tourniquet group survived whereas 7/21 (33%) of the animals in the tourniquet group died within the first 72 h with no deaths observed between 72 and 168 h post-injury. Tourniquet induced ischemia-reperfusion injury (tIRI) likewise resulted in a more robust systemic inflammation (cytokines and chemokines) and concomitant remote pulmonary, renal, and hepatic dysfunction (BUN, CR, ALT. AST, IRI/inflammation-mediated genes). These results indicate prolonged tourniquet application and dHLA increases risk of complications from tIRI, leading to greater risk of local and systemic complications including organ dysfunction or death. We thus need enhanced strategies to mitigate the systemic effects of tIRI, particularly in the military prolonged field care (PFC) setting. Furthermore, future work is needed to extend the window within which tourniquet deflation to assess limb viability remains feasible, as well as new, limb-specific or systemic point of care tests to better assess the risks of tourniquet deflation with limb preservation in order to optimize patient care and save both limb and life.
AB - Tourniquets are critical for the control of traumatic extremity hemorrhage. In this study, we sought to determine, in a rodent blast-related extremity amputation model, the impact of prolonged tourniquet application and delayed limb amputation on survival, systemic inflammation, and remote end organ injury. Adult male Sprague Dawley rats were subjected to blast overpressure (120±7 kPa) and orthopedic extremity injury consisting femur fracture, one-minute soft tissue crush injury (20 psi), ± 180 min of tourniquet-induced hindlimb ischemia followed by delayed (60 min of reperfusion) hindlimb amputation (dHLA). All animals in the non-tourniquet group survived whereas 7/21 (33%) of the animals in the tourniquet group died within the first 72 h with no deaths observed between 72 and 168 h post-injury. Tourniquet induced ischemia-reperfusion injury (tIRI) likewise resulted in a more robust systemic inflammation (cytokines and chemokines) and concomitant remote pulmonary, renal, and hepatic dysfunction (BUN, CR, ALT. AST, IRI/inflammation-mediated genes). These results indicate prolonged tourniquet application and dHLA increases risk of complications from tIRI, leading to greater risk of local and systemic complications including organ dysfunction or death. We thus need enhanced strategies to mitigate the systemic effects of tIRI, particularly in the military prolonged field care (PFC) setting. Furthermore, future work is needed to extend the window within which tourniquet deflation to assess limb viability remains feasible, as well as new, limb-specific or systemic point of care tests to better assess the risks of tourniquet deflation with limb preservation in order to optimize patient care and save both limb and life.
KW - Blast
KW - Extremity trauma
KW - Inflammation
KW - Ischemia reperfusion injury
KW - Multi-organ dysfunction
KW - Rat
KW - Rattus norvegicus
KW - Tourniquet
UR - http://www.scopus.com/inward/record.url?scp=85150036394&partnerID=8YFLogxK
U2 - 10.1016/j.injury.2023.02.047
DO - 10.1016/j.injury.2023.02.047
M3 - Article
C2 - 36906480
SN - 0020-1383
VL - 54
SP - 1792
EP - 1803
JO - Injury
JF - Injury
IS - 6
ER -