TY - JOUR
T1 - Transfemoral amputations
T2 - is there an effect of residual limb length and orientation on energy expenditure?
AU - Bell, Johanna C.
AU - Wolf, Erik J.
AU - Schnall, Barri L.
AU - Tis, John E.
AU - Potter, Benjamin K.
N1 - Funding Information:
The institution of one or more of the authors (EJW, BKP) has received, during the study period, grant funding from the USAMRMC Military Amputee Research Program. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request. Clinical Orthopaedics and Related Research® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use. Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.
PY - 2014/10
Y1 - 2014/10
N2 - Energy cost of ambulation has been evaluated using a variety of measures. With aberrant motions resulting from compensatory strategies, persons with transfemoral amputations generally exhibit a larger center of mass excursion and an increased energy cost. However, few studies have analyzed the effect of residual femur length and orientation or energy cost of ambulation. The purpose of this study was to compare residual limb length and orientation with energy efficiency in patients with transfemoral amputation. We hypothesized that patients with shorter residual limbs and/or more abnormal residual femur alignment would have higher energy expenditure cost and greater center of mass movement than those with longer residual limbs resulting from lacking musculature, shorter and/or misoriented lever arms, and greater effort required to ambulate through use of compensatory movements. Twenty-six adults with acute, trauma-related unilateral transfemoral amputations underwent gait and metabolic analysis testing. Patients were separated into groups for analysis based on residual limb length and residual femoral angle. Cohorts with longer residual limbs walked faster than those with shorter residual limbs (self-selected walking velocity 1.28 m/s versus 1.11 m/s, measured effect size = 1.08; 95% confidence interval = short 1.10-1.12, long 1.26-1.30; p = 0.04). However, there were no differences found with the numbers available between the compared cohorts regardless of limb length or orientation in regard to O2 cost or other metabolic variables, including the center of mass motion. Those with longer residual limbs after transfemoral amputation chose a faster self-selected walking velocity, mirroring previous studies; however, metabolic energy and center of mass metrics did not demonstrate a difference in determining whether energy expenditure is affected by length or orientation of the residual limb after transfemoral amputation. These factors may therefore have less effect on transfemoral amputee gait efficiency and energy requirements than previously thought.
AB - Energy cost of ambulation has been evaluated using a variety of measures. With aberrant motions resulting from compensatory strategies, persons with transfemoral amputations generally exhibit a larger center of mass excursion and an increased energy cost. However, few studies have analyzed the effect of residual femur length and orientation or energy cost of ambulation. The purpose of this study was to compare residual limb length and orientation with energy efficiency in patients with transfemoral amputation. We hypothesized that patients with shorter residual limbs and/or more abnormal residual femur alignment would have higher energy expenditure cost and greater center of mass movement than those with longer residual limbs resulting from lacking musculature, shorter and/or misoriented lever arms, and greater effort required to ambulate through use of compensatory movements. Twenty-six adults with acute, trauma-related unilateral transfemoral amputations underwent gait and metabolic analysis testing. Patients were separated into groups for analysis based on residual limb length and residual femoral angle. Cohorts with longer residual limbs walked faster than those with shorter residual limbs (self-selected walking velocity 1.28 m/s versus 1.11 m/s, measured effect size = 1.08; 95% confidence interval = short 1.10-1.12, long 1.26-1.30; p = 0.04). However, there were no differences found with the numbers available between the compared cohorts regardless of limb length or orientation in regard to O2 cost or other metabolic variables, including the center of mass motion. Those with longer residual limbs after transfemoral amputation chose a faster self-selected walking velocity, mirroring previous studies; however, metabolic energy and center of mass metrics did not demonstrate a difference in determining whether energy expenditure is affected by length or orientation of the residual limb after transfemoral amputation. These factors may therefore have less effect on transfemoral amputee gait efficiency and energy requirements than previously thought.
UR - http://www.scopus.com/inward/record.url?scp=84908621241&partnerID=8YFLogxK
U2 - 10.1007/s11999-014-3630-x
DO - 10.1007/s11999-014-3630-x
M3 - Article
C2 - 24752912
AN - SCOPUS:84908621241
SN - 0009-921X
VL - 472
SP - 3055
EP - 3061
JO - Clinical Orthopaedics and Related Research
JF - Clinical Orthopaedics and Related Research
IS - 10
ER -