Abstract
Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-b1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-b1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.
Original language | English |
---|---|
Pages (from-to) | 2203-2215 |
Number of pages | 13 |
Journal | Journal of Immunology |
Volume | 204 |
Issue number | 8 |
DOIs | |
State | Published - 15 Apr 2020 |
Externally published | Yes |