TY - JOUR
T1 - Underlying trend, seasonality, prediction, forecasting and the contribution of risk factors
T2 - An analysis of globally reported cases of Middle East Respiratory Syndrome Coronavirus
AU - Da'Ar, Omar B.
AU - Ahmed, Anwar E.
N1 - Publisher Copyright:
© 2018 Cambridge University Press.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - This study set out to identify and analyse trends and seasonal variations of monthly global reported cases of the Middle East respiratory syndrome coronavirus (MERS-CoV). It also made a prediction based on the reported and extrapolated into the future by forecasting the trend. Finally, the study assessed contributions of various risk factors in the reported cases. The motivation for this study is that MERS-CoV remains among the list of blueprint priority and potential pandemic diseases globally. Yet, there is a paucity of empirical literature examining trends and seasonality as the available evidence is generally descriptive and anecdotal. The study is a time series analysis using monthly global reported cases of MERS-CoV by the World Health Organisation between January 2015 and January 2018. We decomposed the series into seasonal, irregular and trend components and identified patterns, smoothened series, generated predictions and employed forecasting techniques based on linear regression. We assessed contributions of various risk factors in MERS-CoV cases over time. Successive months of the MERS-CoV cases suggest a significant decreasing trend (P = 0.026 for monthly series and P = 0.047 for Quarterly series). The MERS-CoV cases are forecast to wane by end 2018. Seasonality component of the cases oscillated below or above the baseline (the centred moving average), but no association with the series over time was noted. The results revealed contributions of risk factors such as camel contact, male, old age and being from Saudi Arabia and Middle East regions to the overall reported cases of MERS-CoV. The trend component and several risk factors for global MERS-CoV cases, including camel contact, male, age and geography/region significantly affected the series. Our statistical models appear to suggest significant predictive capacity and the findings may well inform healthcare practitioners and policymakers about the underlying dynamics that produced the globally reported MERS-CoV cases.
AB - This study set out to identify and analyse trends and seasonal variations of monthly global reported cases of the Middle East respiratory syndrome coronavirus (MERS-CoV). It also made a prediction based on the reported and extrapolated into the future by forecasting the trend. Finally, the study assessed contributions of various risk factors in the reported cases. The motivation for this study is that MERS-CoV remains among the list of blueprint priority and potential pandemic diseases globally. Yet, there is a paucity of empirical literature examining trends and seasonality as the available evidence is generally descriptive and anecdotal. The study is a time series analysis using monthly global reported cases of MERS-CoV by the World Health Organisation between January 2015 and January 2018. We decomposed the series into seasonal, irregular and trend components and identified patterns, smoothened series, generated predictions and employed forecasting techniques based on linear regression. We assessed contributions of various risk factors in MERS-CoV cases over time. Successive months of the MERS-CoV cases suggest a significant decreasing trend (P = 0.026 for monthly series and P = 0.047 for Quarterly series). The MERS-CoV cases are forecast to wane by end 2018. Seasonality component of the cases oscillated below or above the baseline (the centred moving average), but no association with the series over time was noted. The results revealed contributions of risk factors such as camel contact, male, old age and being from Saudi Arabia and Middle East regions to the overall reported cases of MERS-CoV. The trend component and several risk factors for global MERS-CoV cases, including camel contact, male, age and geography/region significantly affected the series. Our statistical models appear to suggest significant predictive capacity and the findings may well inform healthcare practitioners and policymakers about the underlying dynamics that produced the globally reported MERS-CoV cases.
KW - Forecasting
KW - MERS-COV cases
KW - prediction
KW - risk factors
KW - seasonality
KW - trend
UR - http://www.scopus.com/inward/record.url?scp=85048306956&partnerID=8YFLogxK
U2 - 10.1017/S0950268818001541
DO - 10.1017/S0950268818001541
M3 - Article
C2 - 29886854
AN - SCOPUS:85048306956
SN - 0950-2688
VL - 146
SP - 1343
EP - 1349
JO - Epidemiology and Infection
JF - Epidemiology and Infection
IS - 11
ER -